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Crop classification is a key issue for agricultural monitoring using remote-sensing
techniques. Synthetic aperture radar (SAR) data are attractive for crop classifi-
cation because of their all-weather, all-day imaging capability. The objective of
this study is to investigate the capability of SAR data for crop classification in
the North China Plain. Multi-temporal Envisat advanced synthetic aperture radar
(ASAR) and TerraSAR data were acquired. A support vector machine (SVM)
classifier was selected for the classification using different combinations of these
SAR data and texture features. The results indicated that multi-configuration SAR
data achieved satisfactory classification accuracy (best overall accuracy of 91.83%)
in the North China Plain. ASAR performed slightly better than TerraSAR data
acquired in the same time span for crop classification, while the combination of
two frequencies of SAR data (C- and X-band) was better than the multi-temporal
C-band data. Two temporal ASAR data acquired in late jointing and flowering
periods achieved sufficient classification accuracy, and adding data to the early
jointing period had little effect on improving classification accuracy. In addition,
texture features of SAR data were also useful for improving classification accuracy.
SAR data have considerable potential for agricultural monitoring and can become
a suitable complementary data source to optical data.

1. Introduction

Remote-sensing techniques have long been an important means for agricultural mon-
itoring, with their ability to quickly and efficiently collect information about spatial
variability occurring in the field (Benedetti and Rossini 1993, González-Sanpedro et al.
2008, Wang et al. 2010). Crop type identification is a key issue for monitoring agricul-
ture, and is the basis for crop acreage and yield estimations, which are critical to many
applications in the domain of agricultural monitoring using remote-sensing techniques
(Wu 2000, Blaes et al. 2005). Generally, crop maps are required to be updated at fre-
quent intervals for proper agricultural management and yield forecasting (Foody et al.
1994). Out of the range of available remote-sensing systems, synthetic aperture radar
(SAR) data is a particularly attractive data source for crop classification applications
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Crop classification using multi-configuration SAR data 171

because of its characteristics of all-weather, all-day imaging capability, particularly in
regions where cloud cover is a problem (Foody et al. 1994, Shao et al. 2001, Del Frate
et al. 2003).

However, classification using a single SAR system with one single configuration,
that is one image at a given frequency, polarization and incidence angle, is often
inadequate to attain the required accuracy of classification (Del Frate et al. 2003).
Considering the dependence of the scattering mechanisms in vegetation canopies on
frequency, polarization and incidence angle, improvements of classification accuracy
can be expected by using multi-frequency, multi-polarization or multi-angle measure-
ments (Foody et al. 1994, Freeman et al. 1994, Del Frate et al. 2003, Jia et al. 2009).
Alternatively, multi-temporal SAR data collected by repeated overpasses can also
improve the classification accuracy, since they are affected by the peculiar variations
induced in backscattering by the growth cycle of a given plant (Le Toan et al. 1997, Tso
and Mather 1999, Shao et al. 2001, Wang et al. 2010). Thus, crop classification using
multi-configuration SAR data has the potential for improving accuracy and is the
trend for SAR data applications in the domain of agriculture. However, an important
question is whether increasing different configurations of SAR data is really better
for crop classification, since more configurations of SAR data can bring the prob-
lem of data redundancy, as well as the increase in processing and data acquisition
costs.

SAR images are granular in appearance due to a phenomenon known as speckle
which results in inter-class confusion and leads to isolated misclassified pixels and
small misclassified spots being introduced into thematic maps (Li et al. 1998). Texture
features, which are robust to speckle perturbation, are important aspects for improving
SAR image classification accuracy and are widely used for classification of SAR data
(Li et al. 1998, Haack and Bechdol 2000, Rajesh et al. 2001, Herold et al. 2004).
Co-occurrence matrix features are always used to obtain texture features of images
(He and Wang 1992, Berberoglu et al. 2007), such as contrast, correlation, energy,
entropy, homogeneity, angular second moment (ASM), dissimilarity and so on. Clausi
(2002) pointed out that a group of statistical factors consisting of contrast, correlation,
and entropy performed better than any single one in the group or in other groups.
Gong et al. (1992) found out that window sizes of 3 × 3 and 5 × 5 were better than
other larger windows. ASM has been shown to improve classification performance of
supervised classification in the urban fringes and change detection in cities (Jensen and
Toll 1982). In this article, texture features for improving crop classification accuracy
using SAR data were also investigated.

Currently, rice or irrigated crop monitoring has become the main subject of research
of SAR data in the domain of agriculture (Shao et al. 2001, Li et al. 2008). However,
SAR data have rarely been used for classifying upland field crops, which are soil
background against the wetland crop like rice. In this article, multi-temporal C-band
advanced synthetic aperture radar (ASAR) data and an X-band TerraSAR data are
investigated for crop classification in the North China Plain. The specific objectives
of this study are to investigate (1) the capability of SAR data for crop classification
in the North China Plain, where the cropland is mainly occupied by winter wheat;
(2) whether multi-frequency SAR data are more effective than multi-temporal SAR
data for improving crop classification accuracy; and (3) the influence of texture
features for improving crop classification accuracy.
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172 K. Jia et al.

Yucheng

N

0 1 2 4 km

Figure 1. (a) Square region in the image shows the geo-location of the Yucheng study area
in Shandong Province, China. (b) This image is the subset of the advanced synthetic aperture
radar (ASAR) image received on 8 May 2009.

2. Study area

The study area is located in Yucheng (centred at 36◦ 47′ N, 116◦33′ E), Shandong
Province of China (see figure 1). This region belongs to the temperate climate zone
and is a typical upland field agriculture area in the North China Plain. It is relatively
flat farmland with an average altitude of about 20 m above sea level, so that uncer-
tainty of classification accuracy caused by topographical facts will be reduced to a
minimum. The annual precipitation is approximately 582 mm and the average temper-
ature is about 13.1◦C. The study area selected in this study is about 15 km × 15 km.
Although it is not a big region, it has the representative characteristics of crop type
distribution in the North China Plain. The cropland is mainly occupied by winter
wheat and a small quantity of cotton. The wheat season begins in early October and
is harvested in June the following year. Cotton is planted in April and harvested in
September.

3. Data and processing

The ASAR on board Envisat, which is operated by the European Space Agency
(ESA), is a C-band SAR. Under the framework of the Dragon 2 project, three ASAR
image mode precision (IMP) images were received from ESA during the growing
period of wheat in the year of 2009 (see table 1). The ASAR images were VV (radio
waves transmitted and received in vertical polarization) polarization with 30 m spatial
resolution, and acquired with an IS2 swath. The image acquisition dates were arranged
for the same satellite orbit with a 35-day cycle on the following dates: 27 February
2009, 3 April 2009 and 8 May 2009. Wheat was after tillering and in the early jointing
period in late February, it is called the early jointing period in this study. When ASAR
data were acquired in April and May, wheat was in late jointing and flowering periods,
respectively, in this study (see table 1).
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174 K. Jia et al.

The received 1B level ASAR data processing, which included radiance calibration,
registration of the three ASAR data, geo-correction and speckle reduction, was car-
ried out using the NEST 3A software (ESA, Paris, France). The radiance calibration
converted the digital number at each pixel in the raw image to a calibrated linear
backscattering coefficient. Because further steps such as speckle suppression have to
be processed, the linear scale was taken as the calibration result instead of the dB scale.
The calibration formula is given as

σ 0 = A2 sin α

K
, (1)

where σ 0 is the backscattering coefficient; A is the digital number of the raw image; α is
the local incident angle; and K is the absolute calibration constant, which is contained
in the header files. After radiance calibration, the function automatic co-registration
in NEST 3A was used to register the three ASAR data. Then geo-correction of the
ASAR data was done using the satellite orbit parameters and the pixel size was resam-
pled to 12.5 m. Since speckle in the SAR image would affect the image interpretation,
the ASAR images were smoothed with a 5 × 5 window gamma adaptive filter to reduce
image speckle.

TerraSAR-X is a side-looking X-band (9.65 GHz) SAR based on an active phased
array antenna technology. It operates at several polarizations, incidence angles and
spatial resolution configurations. A stripmap mode TerraSAR data were acquired over
the study area under the Programme of TerraSAR-X Science Plan on 10 May 2009
(see table 1). The original range and azimuth spatial resolution of these TerraSAR
data were 0.9 and 6.6 m, respectively, and in order to combine with ASAR data, the
pixel size of the TerraSAR data was resampled to 12.5 m. TerraSAR data prepro-
cessing included absolute radiance calibration, geo-correction and speckle reduction.
Absolute calibration allowed the taking into account of all the contributions in the
radiometric values that were not due to the target characteristics (German Aerospace
Centre (DLR) 2008). This permits one to minimize the differences in the image
radiometry and to make the SAR images obtained from different configurations com-
patible with acquisitions made by other radar sensors. The calibration formula is
shown in the following equations:

σ 0 = [
Ks(DN)2 − (NEBN)

]
sin θ , (2)

NEBN = Ks

deg∑

i=0

ci(τ − τref)i, τ ∈ [τmin, τmax], (3)

where K s is the calibration and processor scaling factor; DN is the pixel digital value;
NEBN is the noise equivalent beta naught, which represents the influence of different
noise contributions to the signal; θ is the local incidence angle; deg is the polyno-
mial degree; ci is the coefficient exponent equal to ‘i’; τ ref is the reference point;
τmin and τmax are minimum validity range and maximum validity range, respectively.
These parameters could be found in the header files of the TerraSAR-X data. Speckle
suppression was done using a 5 × 5 window gamma adaptive filter.
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Crop classification using multi-configuration SAR data 175

In order to obtain exactly the co-registration of ASAR and TerraSAR-X data, the
precise geometrical correction of these images, also known as the image to image reg-
istration method, was conducted using a quadratic polynomial method and the error
was controlled within 0.5 pixels.

4. Method

4.1 Texture features extraction

In this study, the main approach to texture analysis was based on the grey level
co-occurrence matrix (GLCM) method proposed by Haralick et al. (1973). The
GLCM assessed the configuration of grey scales in an image and was used to quan-
tify textural variation in images. Because the texture measure in SAR data was not
scientifically justified, it was better to use the texture feature when the SAR data corre-
sponded to the full growth stage of wheat, having little or no soil exposure. Therefore,
the texture measurement was only applied on ASAR and TerraSAR data acquired in
the flowering period of wheat to derive texture features on a per-pixel basis. The tex-
ture images were added to the original backscattering images for crop classification
for further analysis. The co-occurrence matrix values were calculated using a 5 × 5
window size, and the grey level value was 64 to produce the average value for each
texture measure. Four texture measures were used in this study:

Homogeneity: HOM =
N−1∑

i=0

N−1∑

j=0

P(i, j)
1 + (i − j)2

, (4)

Contrast: CON =
N−1∑

i=0

N−1∑

j=0

P(i, j) × (i − j)2, (5)

Entropy: ENT =
N−1∑

i=0

N−1∑

j=0

−P(i, j) × logN(P(i, j)), (6)

Angular second moment: ASM =
N−1∑

i=0

N−1∑

j=0

P(i, j)2, (7)

where N is the number of grey levels; and P(i, j) is the normalized co-occurrence matrix
of dimension N × N.

4.2 Classification method

The support vector machine (SVM) classifier, which has been widely used for classi-
fication of remote-sensing data (Pal and Mather 2005, Kavzoglu and Colkesen 2009),
was selected in this study. Modern SVM was introduced by Cortes and Vapnik (1995),
and a detailed description of SVM can be found in Burges (1998). The SVM training
algorithm promises to obtain the optimal separating hyperplane for a training data set
in terms of a generalization error.

Field observation synchronous to the satellite pass is of great importance to assist
SAR data in classification. Corresponding to ASAR data acquired in late jointing
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176 K. Jia et al.

Wheat

Cotton
Non-crop

Figure 2. Classification results using SVM classifier based on combinations of the three ASAR
data, TerraSAR data and texture features extracted from the SAR data acquired in flowering
period of wheat.
Note: SVM, support vector machine; ASAR, advanced synthetic aperture radar; SAR, syn-
thetic aperture radar.

and flowering periods, field observations about crop physiological parameters and soil
conditions were conducted on 2–4 April and 8–10 May, 2009. The mainly measured
contents included crop height, leaf area index (LAI), per cent crop cover, soil moisture
and so on. In order to know the exact crop distribution characteristics of the study
area, another special field survey to identify the main crop distribution in the study
area was carried out on 19 May 2009. Based on the field survey, wheat, cotton and non-
crop classes were identified as the final classification types. Non-crop areas include
residential area, road, water body, trees and bare land. Randomly selected sample
pixels based on the ground survey were used to select training and validation samples.
For each cover class, sample pixels per class in the SAR image were obtained: 1812
pixels for non-crop area, 1800 pixels for wheat and 330 pixels for cotton. Then half of
the samples were randomly selected as training samples and the remaining half were
used as validation samples. The training and validation samples had no overlap. The
average backscattering values of wheat and cotton can be seen in table 1.

4.3 Accuracy validation

Accuracy validation of the classified maps was based on the independent validation
samples as presented above. For each class, validation samples were easily identified
and located within the study area from the remote sensing images and ground survey.
The overall classification accuracy and kappa statistics estimated from the confusion
matrix using the validation samples (Congalton and Green 1999) were selected for
evaluating the classification results derived from different combinations of the SAR
data. For further validation, these samples were visited during another period of field
data collection.
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178 K. Jia et al.

5. Results and discussion

Classification was conducted using different combinations of ASAR, TerraSAR and
texture features extracted from the SAR data acquired in the flowering period of
wheat. Classification results using combinations of the three ASAR data, TerraSAR
data and texture features extracted from the SAR data acquired in flowering period
of wheat are shown in figure 2 as an example, and the classification accuracy of differ-
ent data combinations can be seen in table 2. Classification using only a single SAR
data set with just one single configuration was often inadequate to attain the required
accuracy of classification (Del Frate et al. 2003). Therefore, classification using only
one single SAR data set is only discussed using ASAR and TerraSAR data acquired
in the flowering period in this study.

Almost all of the wheat fields have been discriminated in the different combina-
tions of these SAR data except for the combination of A1 + A2 (meaning of the
notation A1, A2, A3 and T can be seen in table 1), since the wheat plant height and
coverage rate were lower and easily misclassified to other classes. In addition, there
were misclassification pixels between wheat and other two classes at many edges of
wheat fields, which might be caused by mixed pixels in the edges of the planted area.
However, the classification accuracy of cotton fields was variable in different combina-
tions and commonly lower than wheat fields identification. Taking the best achieved
classification result as an example (T + A1 + A2 + A3 + Texture), it was clear that
the user’s and producer’s accuracies of cotton were lower than wheat estimated from
the confusion matrix (see table 3). The cotton fields were easily mixed with non-crop,
because cotton fields were nearly bare soil before early April, the coverage rate came
as 30–50% in May based on the field observation, and just after this period, cotton
plants could have a sensible influence on backscattering characteristics and be sepa-
rated from non-crop. Therefore, the SAR data acquired in the later period were more
important for cotton field identification.

In principle, the accuracy of classification of crop types by SAR data depends
mainly on the sensitivity of the radar backscattering coefficient to the difference in
the biophysical characteristics of the plant structure, that is, the different interaction
behaviour between radar backscatter and the structure of the canopy (Del Frate et al.
2003, Wang et al. 2010). In addition, soil conditions for plants in the early crop growth
stages influence the backscattering characteristics of the SAR signal. As plants grow,

Table 3. Confusion matrix of classification results using combinations of the three ASAR data,
TerraSAR data and texture features extracted from the SAR data acquired in the flowering

period of wheat.

Ground-truth result (pixels)
Mapped
class (pixels) Non-crop Cotton Wheat Total

User’s
accuracy(%)

Non-crop 824 26 48 898 91.76
Cotton 14 139 5 158 87.97
Wheat 68 0 847 915 92.57
Total 906 165 900 1971
Producer’s
accuracy (%)

90.95 84.24 94.11

Note: ASAR, advanced synthetic aperture radar; SAR, synthetic aperture radar.
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Crop classification using multi-configuration SAR data 179

their radar backscattering characteristics also change with the variety of canopy struc-
ture and the influence of soil conditions is weakened. Thus, multi-temporal data can
add useful information for improving crop classification accuracy (Chen et al. 2007).
Likewise, the radar backscattering characteristics of crops change with the differ-
ent frequency and polarization based on different scattering mechanisms. Therefore,
multi-frequency and multi-polarized SAR data can increase the classification accuracy
(Freeman et al. 1994, Del Frate et al. 2003). These phenomena were also observed in
this study.

As the temporal frequency of ASAR data increases, the classification accuracy also
increases clearly (e.g. A1 + A3 vs. A3 and A1 + A2 + A3 vs. A1 + A2). Furthermore,
when the TerraSAR data were added to the ASAR data for classification, the accuracy
also increased (e.g. T + A1 + A3 vs. A1 + A3). When all the SAR data sets acquired in
this study were used for classification (T + A1 + A2 + A3), the overall accuracy and
kappa coefficient reached 88.48% and 0.79, which was a satisfactory performance for
crop mapping and cultivation acreage estimation. When the texture features extracted
from the SAR data acquired in the flowering period of wheat were also added to the
classification, the classification performance was even higher (T + A1 + A2 + A3 +
Texture), with the overall accuracy and kappa coefficient reaching 91.83% and 0.86,
respectively. The results indicate that the SAR data show satisfactory performance
for upland field crop classification in the North China Plain if multi-configuration
SAR data were available. There is another reason for achieving such high classification
accuracy compared with previous research results (Del Frate et al. 2003, Wang et al.
2010); that is because wheat was the only dominating crop type and there was only a
small quantity of cotton in the study area.

Although the performance of SAR data in classifying upland field crops may still
not be as good as those obtained by optical data and has a much higher cost for acquir-
ing appropriate data sets, it is a suitable substitution for or complement to optical data
for agricultural monitoring using remote sensing techniques, especially in cloud-prone
areas.

Considering the classification performance using only the C-band multi-temporal
ASAR data, the combination of all the three temporal ASAR data sets achieved the
highest classification accuracy (84.12%), which indicates that using more temporal
ASAR data sets can provide more useful information for crop classification. When
considering only two temporal ASAR data sets for classification, the combination of
ASAR in early jointing and late jointing periods of wheat achieved much lower accu-
racy (59.31%) and many wheat fields were not identified. When the ASAR data set
obtained in the flowering period of wheat was added for classification, the accuracy
improved markedly. The classification accuracy using the data combination of A1 +
A3 and A2 + A3 achieved 82.19% and 82.39%, respectively, which had a more than
20% improvement in accuracy compared with that using A1 + A2. The reason might
be that the wheat had a much lower height and coverage rate during the early jointing
and late jointing periods, and cotton in this period was not yet seeded or was only
present as small seedlings, which resulted in the similar backscattering characteristics
of wheat and cotton fields on the ASAR image, and also similar to bare land and
unsurfaced roads. However, in the flowering period, the wheat was much taller (about
70 cm) and had almost 100% surface coverage according to the field observation,
which would greatly influence the microwave signal of SAR and resulted in different
backscattering characteristics between wheat and cotton and other objects. Moreover,
it was found that, based on the field observation, soil under wheat plants had a higher
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moisture content than cotton fields, which leads to different influence on the SAR
signal and enlarged separability between wheat and cotton. The classification results
indicated that the flowering period was most important for crop classification using
SAR data in the three growing periods of wheat in the North China Plain. The combi-
nation of ASAR in late jointing and flowering periods of wheat achieved comparable
accuracy with that of early jointing and flowering periods (A2 + A3 vs. A1 + A3),
which indicated that SAR data acquired in early jointing and late jointing periods
had a similar contribution for crop classification and were inferior to those acquired
during the flowering period.

When comparing the classification results using three and two temporal ASAR data
sets, the accuracy using three temporal ASAR data achieved a smaller improvement
(about 1%) compared with using only two temporal ASAR data sets when the flow-
ering period ASAR data were used as one of the inputs (A1 + A2 + A3 vs. A1 + A3
and A1 + A2 + A3 vs. A2 + A3), which indicated that only two periods of ASAR
data were enough for crop classification, if at least one of the two SAR data sets was
acquired during the flowering period in this study. Adding another temporal data set
in early jointing and late jointing periods of wheat had little effect for improving classi-
fication accuracy. These results could also be observed by comparing the classification
accuracy of T + A1 + A2 + A3 versus T + A1 + A3, and so on. That is to say, the
information contained in two temporal SAR data sets acquired in late jointing and
flowering periods is enough for crop classification. Adding SAR data acquired in the
early jointing period only brings information redundancy, which has little effect on
improving classification accuracy. This phenomenon was also observed by Shao et al.
(2001) when she investigated rice monitoring using multi-temporal Radarsat data in
the Zhaoqing area. She also found that only three temporal radar data sets acquired
at the end of the transplanting and seedling development period, during the ear dif-
ferentiation period and at the beginning of the harvest period of rice were enough for
rice production estimation.

The classification accuracy were all low if using only one data set acquired in
the flowering period of wheat (65.19% of A3 and 61.74% of T), but the combina-
tion of A3 and T had a very much better classification performance, the overall
classification accuracy came to 86.55%. That is to say, a crop had different scatter-
ing mechanisms on C- and X-band SAR and had complementary information for
crop classification. When two temporal ASAR data were available, the classifica-
tion accuracy showed a significant improvement when the ASAR in the flowering
period of wheat was used, about 4–5% increased (T + A1 + A3 vs. A1 + A3 and
T + A2 + A3 vs. A2 + A3). When ASAR data in the flowering period were not
available, the TerraSAR data had a much higher effect on the classification accu-
racy improvement, more than 20% increased (T + A1 vs. A1 + A2 and T + A2 vs.
A1 + A2). In addition, the classification accuracy using the combination of ASAR
and TerraSAR data in the flowering period was better than any other combination of
only using ASAR data, even when all the three temporal ASAR data sets were used
(T + A3 vs. A2 + A3, T + A3 vs. A1 + A2 + A3 and so on). It is indicated that a com-
bination of two frequencies SAR data (X- and C-band) is better than multi-temporal
C-band ASAR data for crop classification in this study. In other words, crops in dif-
ferent growing periods influence the SAR signal less than that of different frequency
SAR signals in only one growing period.

However, the performance for crop classification using TerraSAR data was slightly
inferior to the ASAR data during the flowering period of wheat in this study
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(T vs. A3, T + A1 vs. A1 + A3 and T + A2 vs. A2 + A3). It may be that C-band
SAR data are more suitable for crop classification than X-band SAR data acquired
during the same time period. Brown et al. (1992) also found that C-band data were
slightly better than X-band data for crop classification when he analysed the correla-
tions between X-, C- and L-band imagery in an agricultural environment. But, there
is another possibility, which may be caused by the different spatial resolution and
polarization of ASAR and TerraSAR data. TerraSAR data have a much higher spa-
tial resolution than ASAR data and are resampled to a lower resolution to fit the
ASAR data in this study. The high-resolution SAR signal is sensitive to the variety
of crop states and generate speckles in the homogeneous crop fields, which lead to
isolated misclassified pixels and small misclassified spots in the classification results
and lower the classification accuracy. TerraSAR has HH (radio waves transmitted and
received in horizontal polarization) polarization and the ASAR has VV polarization.
Different polarizations may also influence the classification accuracy. Incident angle
also influences the backscattering characteristics. ASAR data with a steep incident
angle in this study are more sensitive to soil conditions than TerraSAR data, and soil
conditions are quite different among the three class types based on the field observa-
tion. Whether the poor classification performance of the TerraSAR data is caused by
the downscaling of the spatial resolution, the different polarization modes or different
incident angles needs to be investigated in future work, when more SAR data with
variational configurations become available.

The use of texture features was also important for improving the classification accu-
racy using SAR data. Only the texture feature extracted from ASAR and TerraSAR
data acquired in the flowering period, having little or no soil exposure, was used for
classification. A clear improvement in the classification accuracy was observed in this
study when these texture features were added (see table 2). For all of the combina-
tions of different SAR data sets in this study, there was a 3–5% classification accuracy
improvement (e.g. T + Texture vs. T, A3 + Texture vs. A3) compared with use of
backscattering data only. The texture features were robust to speckle perturbation and
could remove part of the salt–pepper appearance in the classification results, and then
improved the performance of SAR data for crop classification.

6. Conclusion

In this study, multi-temporal C-band Envisat ASAR data and an X-band TerraSAR
data set, together with texture features extracted from the SAR data acquired in
the flowering period of wheat, were investigated for crop classification in the North
China Plain. Conclusions from this research show that (1) multi-temporal and multi-
frequency SAR data can achieve satisfactory classification accuracy for upland crop
classification in the North China Plain; (2) a combination of two frequencies of SAR
data (X- and C-band) is better than multi-temporal C-band ASAR data for crop
classification in this study; (3) two temporal SAR data acquired in late jointing and
flowering periods have been shown to be sufficient for classification accuracy, and
adding the data acquired in early jointing period has almost no effect on improving
classification accuracy; and (4) texture features of SAR data acquired in the flower-
ing period of wheat are useful for crop classification and improved the classification
accuracy.

In this study, only multi-temporal and frequency SAR data were investigated
for crop classification. Multi-polarization and multi-angle SAR data are also an
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important aspect of crop classification using SAR data and will be investigated in
future work. SAR data is an attractive data source and has considerable potential for
agriculture monitoring. It could become a suitable substitute for or a complementary
data set to the use of optical data in the future.
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