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In this article, a vegetation classification hypothesis based on plant biochemical
composition is presented. The basic idea of this hypothesis is that the vegeta-
tion species/crops have their own biochemical composition characteristics, which
are separable from each other for those co-existing species at a specific region.
Therefore, vegetation species can be classified based on the biochemical compo-
sition characteristics, which can be retrieved from hyperspectral remote-sensing
data. In order to test this hypothesis, an experiment was conducted in north-west-
ern China. Field data on the biochemical compositions and spectral responses of
different plants and an Earth-observing 1 (EO-1) Hyperion image were simultane-
ously collected. After analysing the relationship between biochemical composition
and spectral data collected from Hyperion, the vegetation biochemical compo-
sitions were estimated using sample biochemical data and bands of Hyperion
data. The vegetation classification was completed using the biochemical con-
tent classifier (BCC) and maximum-likelihood classifier (MLC) with all Hyperion
bands (MLC_A) and selected bands (MLC_S), which were used for estimating
considered biochemical contents (cellulose and carotenoid). The overall classifi-
cation accuracy of the BCC (95.2%) was as good as MLC_S (95.2%) and better
than MLC_A (91.1%), as was the kappa value (BCC 92.849%, MLC_S 92.845%,
MLC_A 86.637%), suggesting that the BCC was a feasible classification method.
The biochemical-based classification method has higher vegetation classification
accuracy and execution speed, reduces data dimension and redundancy and needs
only a few spectral bands to retrieve biochemical contents instead of using all of
the spectral bands. It is an effective method to classify vegetation based on plant
biochemical composition characteristics.

1. Introduction

Hyperspectral techniques have been developing rapidly in recent years. The ability
of hyperspectral techniques to recognize different objects is a dramatic improvement
over previous multispectral or single-wavelength techniques, because of their high
spectral resolution. Many new hyperspectral instruments have been developed for
use in remote sensing, such as the National Aeronautics and Space Administration
(NASA)/Jet Propulsion Laboratory Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) (Green et al. 1998) and the Hyperion hyperspectral instrument carried by
the Earth-observing 1 (EO-1) spacecraft.
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Classification is one of the main usages of hyperspectral images. The maximum-
likelihood classifier (MLC; Hoffbeck 1995) is a classical algorithm of image classi-
fication, whose origin can be traced back to electrical engineering (Nilsson 1965).
And, currently, three main approaches based on intelligent data analysis are being
applied in hyperspectral data classifications: expert systems (Skidmore 1989, De Jong
and Riezebos 1991), artificial neural networks (ANNs; Heerman and Khazenie 1992,
Binagli et al. 2005, Rogan et al. 2008, Pacifici et al. 2009) and decision trees (Friedl
and Brodley 1997, Kandrika and Roy 2008, Tooke et al. 2009). However, no image
classifier provides perfect results. For example, statistical methods such as the MLC
are still in use for hyperspectral image classification (Binagli et al. 2005, Boschetti
et al. 2007), which relies on the assumption that the probabilities of class membership
can be modelled by a normal probability density function, and this assumption is not
always valid. For ANNs, the training times can be lengthy, and designing the network
architecture and choosing the values of the learning rate parameters are not straight-
forward (Foody and Arora 1997). The decision-tree algorithm has many advantages
over the MLC and other intelligent classifiers: it is computationally fast, makes no
statistical assumptions and can handle data that are represented using different mea-
surement scales (Friedl and Brodley 1997); but most decision trees are fixed to binary
splits for numeric attributes and do not allow backtracking in the tree construction
phase (Ankerst et al. 1999).

Furthermore, a large number of image bands of hyperspectral images are too com-
plex for parametric tools. The complexity of using such a large number of bands does
not only reduce the precision of model estimation of these parametric tools, but also
causes the singularity of covariance matrix inversion (Vaiphasa et al. 2007). This is
even more serious for vegetation classification because of the comparability of spectra
of different vegetation species/types. Many band selection methods have been devel-
oped to overcome this problem (Kavzoglu and Mather 2002, Ulfarsson et al. 2003,
Vaiphasa et al. 2007), but they are always only suitable for specific studies.

Biochemical components of vegetation, such as the chlorophyll, protein, lignin,
cellulose and nitrogen contents, are useful characteristics that can be measured in
this manner because the contents and compositions of these compounds can directly
or indirectly influence the vegetation’s reflectance properties. Estimating biochemi-
cal content is thus an important application of remote sensing (Myneni et al. 1995,
Verstraete et al. 1996). The earliest such study was applied to dry leaves. In the early
1960s, researchers at the United States Department of Agriculture (USDA) used near-
infrared (NIR) spectroscopy to measure and analyse the spectra of dried and crushed
plant leaves and successfully estimated the contents of cellulose, lignin, protein and
starch (Curran 1989). Many researchers are now trying to find suitable bands to inves-
tigate the biochemical composition of fresh leaves. Fourty and Baret (1998) used the
spectral reflectance of fresh leaves and a combination of several bands to estimate bio-
chemical compositions. The estimation of water and dry matter contents gave good
results, but estimates of other parameters contained high uncertainties.

After the EO-1 hyperspectral sensor was launched, researchers turned their atten-
tion to estimating vegetation biochemical compositions using hyperspectral data from
satellites. Coops et al. (2003) used satellite-derived hyperspectral data to estimate euca-
lypt foliage nitrogen contents. Smith et al. (2003) estimated the nitrogen concentration
of a temperate forest canopy and compared the results with the values estimated using
the AVIRIS sensor. Townsend et al. (2003) also studied canopy nitrogen concentra-
tion. Ollinger and Smith (2005) simulated the nitrogen concentration of a temperate
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Vegetation classification method with biochemical composition 9309

forest canopy and estimated its net primary production by integrating field data with
imaging spectroscopy. Zhang et al. (2008) developed a hyperspectral remote sens-
ing algorithm to retrieve total leaf chlorophyll content, for both open spruce and
closed forests, and tested for open forest canopies. At present, biochemical com-
position estimation from remote-sensing data usually includes three main methods:
sensitive spectral bands (Huang et al. 2004), vegetation index (Wu et al. 2008) and
model inversion (Kempeneers et al. 2008). A physical model is rarely used for bio-
chemical contents estimation, for it is difficult to inverse and limited to several specific
biochemical compositions.

Ustin et al. (2009) reviewed the recent advances in detecting plant pigments at
the leaf level and discussed the successes of and reasons why challenges remain for
robust remote observation and quantification. Kokaly et al. (2009) reviewed research
into improving the application of imaging spectrometers to quantify non-pigment
biochemical constituents of plants. Currently, hyperspectral data are widely used in
estimating biochemical composition contents of plants, and more precise spectral
resolution can help researchers to accurately retrieve vegetation biochemical composi-
tions. Remote sensing offers a practical way to estimate foliar chemical concentrations,
particularly when this must be done over large geographic areas.

Zarco-Tejada and Miller (1999) classified vegetated land cover based on red-
edge spectral parameters, which were responsive to foliar chlorophyll pigment, and
obtained a promising result. The basic idea of this article is that different plant species,
co-existing in a certain area, have biochemical composition characteristics separable
from each other, which can be retrieved by remote-sensing data and used to classify
vegetation. In order to test this hypothesis, an experiment was conducted in north-
western China, and an effective vegetation classification method was developed based
on plant biochemical compositions estimated from Hyperion data.

2. Study area and data

2.1 Study area

The study area selected is a farm in north-western China’s Gansu Province (see
figure 1). It is a typical semi-arid farming area and has an average precipitation of
173.3 mm per year. Therefore, there is abundant sunlight and fine sunshine days, and
it is relatively easy to acquire remote-sensing data. The farm is located in a flat valley
at an average altitude of about 1900 m above sea level, and so uncertainty of classifi-
cation accuracy caused by topographical facts will be reduced to the minimum. It is a
producing base of legal opium poppy, which is used for medicine in China. The other
dominant crops are wheat and sunflower.

2.2 Remote sensing data

An EO-1 Hyperion image and a Quickbird image were acquired in this study. The
Hyperion image was acquired on 14 June 2005, at around 11:00 am local time (see
figure 2). Hyperion is one of the three sensors on the NASA EO-1 platform, which
was launched in November 2000. Hyperion is a push-broom imaging instrument that
provides imagery with 242 spectral bands, with 10 nm spectral resolution and 30 m
spatial resolution. Among its 242 spectral channels, channels 1–70 belong to the vis-
ible and NIR bands (400–1000 nm) and the others are shortwave infrared bands
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9310 K. Jia et al.

Figure 1. The pink square in the left image shows the geo-location of the study area in north-
west China and the right image shows the distribution of the sampling points.

Figure 2. The Hyperion image used in this study.

(900–2500 nm). The satellite’s data (digital numbers) were converted into radiances
using the scaling approach proposed by Beck (2003).

In order to accurately position the sampling area and validate the classification
accuracy of Hyperion, a high spatial resolution Quickbird image was obtained on 18
June 2005, at around 11:00 am local time. This multispectral image has four spectral
bands: blue band, 450–520 nm; green band, 520–600 nm; red band, 630–690 nm; NIR
band, 760–900 nm and a spatial resolution of 2.44 m.

2.3 Field survey

The field campaign was conducted on 14 June 2005 concurrently with acquired
Hyperion data. The weather conditions were perfectly good, sunny and windless. They
were suitable for acquiring spectral reflectance measurements and remote-sensing
data. Twenty-five square sample sites (30 m × 30 m) within the study area were selected
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Vegetation classification method with biochemical composition 9311

based on the different crop distribution patterns and growth conditions (see figure 1).
There were 12 poppy, 9 wheat and 4 sunflower sample sites. The centre of each sam-
ple site was determined using the Differential Global Positioning System (DGPS),
with an accuracy of ±5 m. Within each sample site, there are five sample plots (each
3 m × 3 m), one at the centre of the site and the remaining four located at a distance
of 10 m from each corner of the square site, along the diagonal of the square. Crop
canopy spectral reflectance was measured at each sample plot, and then leaf samples
were collected, as described below.

A FieldSpec Pro portable spectrometer (ASD Inc., Boulder, CO, USA) was used
for the field spectral reflectance measurements. This spectrometer provided spectral
coverage from 350 to 2500 nm at sampling intervals of 1.4 nm in the 350–1050 nm
range and 2 nm in the 1050–2500 nm range. Pressed barium sulphate (BaSO4) was
used as the reference standard to calibrate the observed values. The spectrometer’s
probe, which has a 25◦ field of view, pointed straight downwards above the canopy.
The measurement height was about 130 cm from the top of the canopy, and the
field of view was about 60 cm wide. The spectral reflectance of each sample plot was
measured 10 times. The overall spectral reflectance value for each sample plot was
then calculated as the average of these 10 measurements, and the average of the five
plots was the spectral value for each sample site. All spectra were converted into
absolute reflectance values based on the measured value for the reference standard,
which had known spectral properties.

At the same time as the spectral survey, leaf samples were collected at each sample
plot for each crop. Three mature, fully expanded apical leaves were obtained, and the
average of the five plots was the biochemical contents value for each sample site. The
wet weight of the sampled leaves in each sample plot was about 200 g. Eight biochemi-
cal parameters (water content, protein, cellulose, lignin, chlorophyll, carotenoid, total
nitrogen and total phosphorus) were measured in the laboratory, using the standard
plant analysis methods in China (Shaanxi Normal University 1980, Zou 1995, Soil
Science Society of China 2000).

3. Methods

3.1 Data processing

The Hyperion Level 1B data have 242 bands, of which 196 are valid bands; the
remaining bands are the zero and overlapping bands, located in bands 1–7, 58–78 and
225–242. The 196 valid bands were analysed further. Several stripes (data columns of
poor quality) in the Hyperion data contained no information or unusually low radi-
ance values. These pixels were detected and replaced by the average radiance value of
the immediately adjacent left and right pixels using the method proposed by Han et al.
(2002). In addition, a minimum noise fraction (MNF) process was used to reduce the
noise in the hyperspectral image (Green et al. 1988). Based on the eigenvalue profile,
the effective bands that contained the most information were selected and an inverse
MNF-transformed to obtain the Hyperion data for further analysis.

To obtain the hemispherical directional reflectance factor of the image, approxi-
mated by the surface reflectance (Schaepman et al. 2006), Atmospheric CORrection
Now (ACORN) version 4.0 was used, which was based on the MODTRAN 4 radia-
tive transfer model (AIG 2002). ACORN uses two water-absorption channels (940
and 1140 nm) to evaluate the amount of water vapour in combination with the visi-
bility at the moment of data acquisition. Due to the low signal-to-noise ratio at the
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9312 K. Jia et al.

beginning and end of the spectra (<436 and >2385 nm) and the significant water
absorption in several spectral bands, 64 bands of the 196 valid bands were dropped,
leaving 132 bands (located in bands 10–56, 87–96, 105–118, 135–162 and 189–221 of
original Hyperion bands) for classification in this study.

Geometric corrections were performed using 40 ground control points from already
geo-corrected Landsat Enhanced Thematic Mapper (ETM) data, which have a good
consistency with the field GPS value, and the resulting geometric co-registration error
was less than 1 pixel (30 m). A subset of the image that consisted of 256 columns × 256
lines × 132 spectral bands and that covered the area of interest was extracted from
the Hyperion image (see figure 2) with World Geodetic System 84 (WGS-84) projec-
tion and at a 30 m spatial resolution. The comparison between the field survey and
Hyperion spectral curve of a randomly selected poppy site is shown in figure 3. The
Hyperion spectral curve has a similar trend to that of field survey data. It indicated a
preferable image processing result.

To classify the hyperspectral data by means of MLC, endmembers that represent
surface features were required. Endmembers were derived from known areas using the
‘region of interest’ (ROI) tools provided by ENVI version 4.5 (ITT Industries Inc.,
Boulder, CO, USA). In order to validate the classification accuracy, a number of sam-
ple pixels were randomly selected by the ‘generate random sample’ function of ENVI
software based on the ground truth image, which was obtained by visual interpreta-
tion of the Quickbird image and ground survey. Table 1 summarizes the characteristics
of the resulting endmember ROIs for training classifier and pixels used for validation.

In order to conduct the biochemical composition-based classification, biochemi-
cal parameters with obvious separability among the different plant species should be
found out. One-way analysis of variance (ANOVA) was used to test whether the dif-
ference for the pairs of the three species (poppy vs. wheat, poppy vs. sunflower and
wheat vs. sunflower) was significant for the eight biochemical parameter contents. The

Figure 3. The comparison between the field survey and Hyperion spectral curve of a randomly
selected poppy site.
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Vegetation classification method with biochemical composition 9313

Table 1. Number of regions of interest (ROIs) and pixels in each vegetation
type used for training the classifier and number of pixels used for validation.

Poppy Wheat Sunflower

NRT 8 6 6
NPT 300 287 245
NPV 105 98 112
TP 405 385 357

Notes: The sample pixels used for validation were generated by the ‘gener-
ate random sample’ function of ENVI software based on the ground truth
image, which was obtained by visual interpretation of the Quickbird image
and ground survey. NRT, number of ROIs used for training; NPT, number
of pixels used for training; NPV, number of pixels used for validation; TP,
total number of pixels used for training and validation.

ANOVA was tested with a 95% confidence level (p < 0.05). A significance test indi-
cated that if the difference was significant then this biochemical parameter could be
used for discriminating the two tested species. After ANOVA testing, the indepen-
dent and appropriate biochemical parameters would be selected for further vegetation
classification.

Some biochemical parameters of vegetation were strongly correlated, such as pro-
tein and total nitrogen. To identify the independent biochemical parameters, Pearson’s
correlations between the eight parameters were calculated. If the correlation between
two parameters was higher than 0.8, only one of the two would be retained for further
analysis. To do so, the parameter that had the lowest mean correlation with the other
six parameters was chosen.

3.2 Maximum-likelihood classifier method

The MLC algorithm has been the most popular one used for classification of remote
sensing imagery. As a parametric classifier, it assumes that a hyper-ellipsoid decision
volume can be used to approximate the shape of the data clusters. For a given unknown
pixel, described by a vector of features, the probability of membership in each class is
calculated using the mean feature vectors of the classes, the covariance matrix and the
prior probability (Duda and Hart 1973). The unknown pixel is considered to belong
to the class with the maximum probability of membership. However, MLC classifi-
cation performances are strongly related to the number of bands considered (Binagli
et al. 2005). In this study, all bands of the Hyperion data and the bands selected for
estimating biochemical parameter contents (biochemical used for biochemical content
classifier, BCC) are provided for the MLC. The two classification results of the MLC
will be compared with the result of the BCC to test whether the BCC is a credible
classification method.

3.3 Biochemical content classifier method

The BCC algorithm is based on the principle that different plant species have separable
biochemical compositions, and that these differences directly or indirectly influence
the spectral reflectance of the vegetation. Therefore, the spectral reflectance can be
used to estimate the biochemical composition of the vegetation at a canopy scale and
can therefore be used to classify species based on their biochemical properties. The
flowchart of BCC is shown in figure 4. The first step is to analyse the biochemical
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9314 K. Jia et al.

Separable biochemical
contents analysis 

Biochemical content
estimation model

Design
classification tree

Classification of
vegetation

Accuracy validation
Make the design rules

Figure 4. The flowchart of biochemical content classifier (BCC) method.

characteristics of different vegetation species/crop types and find out the biochemical
compositions that can be used for classification. Next is to estimate the biochemical
content from remote-sensing data using a model, which can be an empirical or a phys-
ical one. Then, based on the biochemical content and characteristics, it is possible
to lay out a decision tree for classification. Finally, the classification accuracy will be
validated.

3.3.1 Biochemical composition estimation. Biochemical contents estimation is the
first step in the BCC classification method. In this study, the stepwise multivariable
regression (SMR) method, which was most commonly used to predict crop variables in
plants (Thenkabail et al. 2000, Curran et al. 2001, Haboudane et al. 2002), was applied
to develop the biochemical contents estimation model using sample biochemical data
and bands of Hyperion data. The SMR selected, in a stepwise manner, the appropriate
Hyperion bands into the model of biochemical content estimation based on the exper-
imental data. The regression equation would be used to estimate biochemical contents
using Hyperion data.

3.3.2 Decision tree. The rationale of the decision-tree method is that starting from
a set of examples described by a set of features, a binary decision rule can be defined
that will split the data into two groups that are each more homogeneous than the
original data. Each group is then iteratively subjected to a new split, generating
increasingly homogeneous groups. In theory, the iteration continues until ‘pure’ sub-
sets are obtained. Decision rules at each split are normally obtained by applying a
threshold to the attribute that provides the best discrimination (a univariate tree) or
by defining the best discriminant function based on linear combinations of attributes
(a multivariate tree) (Brodley and Utgoff 1995). The choice of attributes to be used in
each split is guided by a quality, which is applied to the generated subset. This step
integrates the results of previous steps (i.e. to define the thresholds at each step in the
tree) and uses the biochemical compositions to build the decision-tree classifier.

The BCC is only assumed to classify vegetation, so non-vegetated areas should be
eliminated from further analysis, including roads, residential areas and water bodies.
The elimination of non-vegetation areas was done by the normalized-difference veg-
etation index (NDVI), which revealed strong spectral differences between vegetated
and non-vegetated areas. In this study, 890 nm (band 54 of the Hyperion data) and
670 nm (band 32 of the Hyperion data) were selected as the NIR band and the red
band, respectively, to calculate the NDVI value. NDVI is defined as follows:

NDVI =RNIR − Rred

RNIR+Rred
, (1)
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Vegetation classification method with biochemical composition 9315

where RNIR is the reflectance in the NIR band and Rred is the reflectance in the red
band.

Then, the biochemical parameters that could be used to distinguish between dif-
ferent plant species would be identified and used to define the decision rules applied
to split the data into subsets. The decision rules were derived by expert knowledge
analysing biochemical data values collected in this study.

3.4 Validation

To validate the BCC classification method, the classification results with those pro-
duced by visual interpretation of Quickbird image were compared. The objective was
to determine whether the BCC was a feasible approach for classifying vegetation.
Randomly selected sample pixels based on the ground truth image obtained from
visual interpretation of Quickbird image and ground survey as described above were
used to validate the accuracy of the classified maps. For each class, more than 90 pixels
were obtained: 105 pixels for poppies, 98 pixels for wheat and 112 pixels for sunflowers.
The classification accuracy and kappa statistic were then estimated (Congalton and
Green 1999, Tso and Mather 2001). In order to access statistical differences between
the accuracy measurements of the BCC and MLC, a Z-test was performed (Congalton
1991).

4. Results

4.1 Biochemical compositions

The ANOVA test results for each class pair are shown in table 2. The conclusions
from the ANOVA test are that the mean biochemical contents between each class
pair are significantly different in many measured biochemical compositions. All of
the eight measured biochemical contents are significantly different for wheat versus
sunflower. Seven are significant for poppy versus wheat; only total phosphorus is not.
Only cellulose, carotenoid and total phosphorus contents are significantly different for
poppy versus sunflower. It indicates many biochemical parameter contents are similar
for poppy and sunflower. If only using one biochemical composition to classify the

Table 2. Result of statistical difference using ANOVA with 95% confidence level (p < 0.05)
between the mean biochemical contents of all class pairs of poppy, wheat and sunflower.

Comparison Water Protein
Total

nitrogen Cellulose Carotenoid Lignin
Total

phosphorus
Total

chlorophyll

Poppy
versus
wheat

S S S S S S NS S

Poppy
versus
sunflower

NS NS NS S S NS S NS

Wheat
versus
sunflower

S S S S S S S S

Note: S, significant; NS, not significant.
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9316 K. Jia et al.

three species, cellulose and carotenoid will be the choice. There will be more choices if
using two or more biochemical contents.

The Pearson’s correlations between the different biochemical parameters were cal-
culated (see table 3). Some biochemical parameters were strongly correlated, such as
protein and nitrogen, and water and cellulose. And some biochemical parameters were
independent of others; for example, total phosphorus was not obviously correlated
with other biochemical parameters. Using all strongly correlated parameters to clas-
sify vegetation was not significant, for the classification results from using any one
of these parameters was similar with any other one, even all of them. Thus, in the
subsequent analyses, only one of the strongly correlated components would be con-
sidered. To do so, the parameter that had the lowest mean correlation with the other
parameters was chosen. Five parameters, including cellulose, lignin, carotenoid, total
phosphorus and chlorophyll, were selected for the subsequent analysis.

The statistical characteristics of the five biochemical parameters for the three plant
species were calculated, including mean and standard deviation (SD) values (see
table 4). The results showed that the mean biochemical compositions of the plants dif-
fered. For cellulose composition, the cellulose content of wheat was more than three
times the values in the other species, and the content differed slightly between poppy
and sunflower. So cellulose content was a significant biochemical composition factor
for discriminating wheat from the other two species. Considering ANOVA test and the
statistical characteristics of the five biochemical composition, lignin and chlorophyll
content of sunflower and poppy were not significantly different, the carotenoid content
of sunflower was higher than poppy and the difference of carotenoid contents between
sunflower and poppy was larger than that between cellulose and phosphorus. So,
carotenoid content was selected for distinguishing poppy and sunflower fields. Finally,
the cellulose and carotenoid contents were selected as the biochemical composition
factors to separate the three plants in this study. The wheat fields were discriminated
from the other two species using cellulose contents, and then sunflower and poppy
were distinguished by carotenoid contents.

After choosing the biochemical composition factors for classification, the next step
was using Hyperion data to retrieve cellulose and carotenoid contents. The spectral
reflectance data were extracted from the Hyperion image using the field survey GPS
data. Then, the SMR was used for building the biochemical contents estimation model
(see table 5). Of the nine wavebands selected for estimating cellulose and carotenoid
contents, most were directly or indirectly related (located within ± 12 nm of absorp-
tion wavelength) to an absorption feature of the biochemical of interest or used by
other researchers. For bands selected to estimate cellulose contents, R11 (457.34 nm),
R96 (1104.18 nm) and R135 (1497.63 nm) were, respectively, related to absorption
feature (Curran 1989) of chlorophyll (460 nm), lignin (1120 nm) and cellulose (1490
nm). Martin et al. (2008) found nitrogen content had a relationship to 720–730 nm,
which was related to R37 (721.9 nm). Cellulose content had a high relationship with
chlorophyll, lignin and nitrogen, so these bands were selected by the SMR to estimate
that cellulose content was reasonable. For carotenoid content estimation, 510, 700,
710 (Gitelson et al. 2002, 2006), 708 and 860 nm (Datt 1998) bands were used. These
bands were related to the bands selected (R16, R36 and R51) in this study to estimate
carotenoid content. The regression model of cellulose and carotenoid estimation is
shown in table 5.
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9318 K. Jia et al.

Table 4. The mean and standard deviation (SD) values of the five independent biochemical
parameters from table 2 for the three species.

Cellulose
(g kg–1)

Lignin
(g kg–1)

Carotenoid
(mg (100 g)–1)

Total
phosphorus

(g kg–1)

Total
chlorophyll

(g kg–1)

Poppy Mean 73.76 221.43 43.03 4.31 1.49
SD 3.68 29.73 4.71 0.66 0.17

Wheat Mean 243.94 294.48 26.26 4.08 1.18
SD 34.10 35.85 3.03 0.21 0.21

Sunflower Mean 79.20 239.05 51.00 5.34 1.65
SD 4.90 19.21 3.25 1.28 0.30

Note: The total sample number is 25.

Table 5. The results of stepwise multivariable regression (SMR) analysis between the wavebands
of Hyperion and cellulose and carotenoid contents.

Biochemical

Number
of bands
selected R2

Selected wavebands
of Hyperion,
wavelength in

parentheses (nm)
Model variable and

coefficient in parentheses

Cellulose 5 0.955 R11 (457.34), R37
(721.9),

R11 (3791.25), R37
(−3629.53),

R96 (1104.18), R135 R96 (2265.18), R135
(−1482.42),

(1497.63), R206
(2213.93)

R206 (2493.36), constant
(–288.04)

Carotenoid 4 0.854 R16 (508.22), R36
(711.72),

R16 (–1612.76), R36
(960.04), R51 (−554.59),

R51 (864.35), R118
(1326.05)

R118 (−270.65), constant
(–385.57)

Note: R2 is the coefficient of determination.

4.2 Decision tree

NDVI was used to eliminate non-vegetated areas in the subsequent analysis, with
NDVI >0.3 used to identify vegetated areas in the first step of the decision tree.
Cellulose content was first used to separate wheat from poppy and sunflower, using
a threshold value of 150 g kg–1. Wheat had greater cellulose content than poppy and
sunflower. Pixels with cellulose contents larger than 150 g kg–1 were classified as wheat.
Then carotenoid content was used to separate poppy and sunflower with a threshold
value of 47.7 mg (100 g)–1. Pixels that had an estimated carotenoid content higher
than these values were classified as sunflower, and others were classified as poppy. The
resulting decision-tree classifier is shown in figure 5.

4.3 Classification

Vegetation classification based on the Hyperion data by applying the BCC and MLC
methods was conducted using the ENVI software (see figure 6). A mask, generated
using the NDVI values from the decision tree used in the BCC approach, was also
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Y N

Y N

Non-vegetated

Wheat

NDVI > 0.3

CEL < 150 (g kg–1)

CAR > 47.7 (mg (100 g)–1)

SunflowerPoppy

Y N

Figure 5. The decision-tree classifier developed to distinguish between the three crops based
on Hyperion spectral reflectance data.
Note: CAR, carotenoid contents; CEL, cellulose content; Y, yes; N, no; NDVI, normalized-
difference vegetation index.

Non-vegetated Poppy Wheat Sunflower

Figure 6. Classification results: (a) maximum-likelihood classifier (MLC) method using all
Hyperion bands; (b) MLC using the bands which are selected for estimating cellulose and
carotenoid contents; and (c) biochemical content classifier (BCC) method.

used in the MLC approach to eliminate non-vegetated areas, so that the classification
results from the two methods could be compared.

All of the poppy and sunflower fields had been discriminated in the Hyperion image
using both BCC and MLC classification methods. However, the classification results
of the MLC using all the Hyperion bands (MLC_A) contained many small speckles
at the edges of vegetated areas, such as pixels at many edges of wheat fields that were
mis-classified as poppy pixels. This phenomenon might be caused by spectral mixture
in the edges of the planted area, for the spatial resolution of Hyperion is not very
fine. This phenomenon was also seen in the classification results of the BCC and MLC
methods using the bands which are selected for estimating cellulose and carotenoid
contents (MLC_S), but the number of speckles was less than that of the MLC method
using all the Hyperion bands, and the edges of the vegetated areas were smoother.
The mis-classification of spectral mixed pixels at the edges of vegetation areas greatly
influence (i.e. decrease) the classification accuracy.
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The BCC method has a similar classification result with MLC_S and the two classi-
fication results are comparative. It indicated that the BCC and MLC_S performed
better than MLC_A in classification accuracy and in dealing with spectral mixed
pixels, which could be leading to mis-classification. The exact accuracy evaluation is
seen next.

4.4 Accuracy evaluation

The choice of the most appropriate classifier in terms of accuracy depends greatly on
the objectives of the mapping project (Stehman 1997). Because the aim of this study
was to evaluate whether a classification method based on plant biochemical compo-
sitions would be feasible, the overall classification accuracy and the kappa coefficient
are both important indicators. Table 6 shows the confusion matrix achieved using the
MLC and BCC methods for the same test data.

The overall performance of the BCC method (accuracy: 95.2%; kappa coefficient:
92.849%) was as good as MLC_S (accuracy: 95.2%; kappa coefficient: 92.845%) and
better than MLC_A (accuracy: 91.1%; kappa coefficient: 86.637%). The Z-test was
used to compare the error matrices (two at a time) to determine whether they are sig-
nificantly different (see table 7). Z > 1.96 or Z < –1.96 would indicate the difference of
the two error matrices being significant at the 5% significance level (Foody 2009). If the
two error matrices are not significantly different, when given the choice of only these
two approaches, one should use the easier, quicker or more efficient approach because
the accuracy will not be the deciding factor (Congalton 1991). We can see from the Z-
test results that the performance of MLC_A is significantly different to that of MLC_S
and BCC, and BCC versus MLC_S is not significantly different. It indicated that bet-
ter classification results can be achieved using bands which are selected for estimating
biochemical factors. It is therefore concluded that vegetation classification based on
plant biochemical compositions is a feasible vegetation classification method using
remote-sensing data.

Table 6. Confusion matrix for the vegetation classification results of maximum-likelihood clas-
sifier (MLC) using all Hyperion bands (MLC_A) and using selected bands (MLC_S) and

classification results based on the biochemical content classifier (BCC).

Ground truth result (pixels)

Mapped class Poppy Wheat Sunflower Total

Poppy MLC_A 102 14 4 120
MLC_S 104 5 3 112
BCC 104 5 2 111

Wheat MLC_A 2 81 4 87
MLC_S 0 90 6 96
BCC 0 91 6 97

Sunflower MLC_A 1 3 104 108
MLC_S 1 3 103 107
BCC 1 2 104 107

Total MLC_A 105 98 112 315
MLC_S 105 98 112 315
BCC 105 98 112 315
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Vegetation classification method with biochemical composition 9321

Table 7. Z-test results for comparison between error matrices for the
different classification methods.

Comparison Z-statistic Result∗

MLC_A versus MLC_S 2.0680 S
MLC_A versus BCC 2.0696 S
MLC_S versus BCC 0.0015 NS

Notes: MLC_A, maximum-likelihood classifier using all Hyperion
bands; MLC_S, maximum-likelihood classifier using selected bands;
BCC, biochemical content classifier. S, significant; NS, not significant.
∗At the 95% confidence level.

5. Discussion and conclusions

Just like human vision discriminates vegetation types based on colour, remote sens-
ing classifies vegetation types based on spectral reflectance. The pigment content of a
plant determines the vegetation colour, and biochemical content influences the spec-
tral reflectance of vegetation. If plant biochemical content can be used for vegetation
classification of remote sensing, it will be more significant and will tally with human
cognizance systems.

This study is to develop a vegetation classification method based on plant biochem-
ical compositions estimated from remote-sensing images. The results indicated that if
there was a separable biochemical characteristic for different vegetation species/crop
types, and if using hyperspectral image plant biochemical content can be estimated
over the vegetation canopy, then the estimated biochemical content can be used to
classify vegetation species based on the separable biochemical characteristics. The
classification results using the plant biochemical compositions-based method are more
accurate than a traditional method based on an MLC using all the hyperspectral data,
and thus represent a feasible tool for vegetation classification at a canopy scale.

Only a few spectral bands which were used to retrieve biochemical contents were
needed for the biochemical-based classification method instead of all of the spectral
bands of remote-sensing data. This reduced the data dimension and redundancy and
gave high vegetation classification accuracy. The BCC method using decision trees
for classification shares the same advantages as a decision-tree classifier compared
with traditional probabilistic algorithms. Decision trees are strictly non-parametric,
free from assumptions about the distribution of a parameter, can deal with non-linear
relationships, are insensitive to missing values and can handle both numerical and
categorical inputs and rapid calculation.

The biochemical contents estimation method in this study uses the SMR method,
which is an empirical model and must be spatially and temporally limited. Although
most of the selected bands are related to the absorption feature of the biochemical
and make the estimation steady, the empirical model still needs to be built based on
field survey data in specific regions. The biochemical content estimation accuracy can
also influence the vegetation classification accuracy. An inaccurate biochemical con-
tent estimation result may lead to a false classification result. It is necessary to master
the separable biochemical characters of different vegetation types in specific study
areas, for it is important information to build the decision-tree classifier and the basic
hypothesis of the BCC classification method.
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9322 K. Jia et al.

The BCC method provides a significant vegetation classification method for remote-
sensing data and will be used for vegetation classification on a larger scale, such as
classification of crop types in agricultural regions and tree types in forest regions. This
study provides an important illustration of the usefulness of the BCC method using
hyperspectral remote sensing in an agricultural region. Most previous studies of plant
biochemical content estimation using remote sensing were aimed at a single species.
However, the BCC method must be able to estimate biochemical compositions for
heterogeneous vegetation communities at a canopy scale, which is a large challenge
for remote sensing. Despite this challenge, in this study, an empirical method was used
to estimate plant biochemical compositions with accuracy at least as good as the MLC
approach.

Although good results were achieved, accuracy should still be improved, and the
empirical equations are limited both temporally and spatially. The selection of a phys-
ically based wavelength for biochemical content estimation would make the present
work more robust, and this is a future objective of this research. The BCC method
will be a useful tool in vegetation classification as it needs fewer spectral bands and
has higher classification accuracy.
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