Annex B. Quick reference to CropWatch indicators, spatial units and methodologies

The following sections give a brief overview of CropWatch indicators and spatial units, along with a description of the CropWatch production estimation methodology. For more information about CropWatch methodologies, visit CropWatch online at **www.cropwatch.com.cn.**

Agroecological zones for 43 key countries

Overview

217 agroecological zones for the 43 key countries across the globe

Description

43 key agricultural countries are divided into 217 agro-ecological zones based on cropping systems, climatic zones, and topographic conditions. Each country is considered separately. A limited number of regions (e.g., region 001, region 027, and region 127) are not relevant for the crops currently monitored by CropWatch but are included to allow for more complete coverage of the 43 key countries. Some regions are more relevant for rangeland and livestock monitoring, which is also essential for food security.

CropWatch indicators

The CropWatch indicators are designed to assess the condition of crops and the environment in which they grow and develop; the indicators—RAIN (for rainfall), TEMP (temperature), and RADPAR (photosynthetically active radiation, PAR)—are not identical to the weather variables, but instead are value-added indicators computed only over crop growing areas (thus for example excluding deserts and rangelands) and spatially weighted according to the agricultural production potential, with marginal areas

receiving less weight than productive ones. The indicators are expressed using the usual physical units (e.g., mm for rainfall) and were thoroughly tested for their coherence over space and time. CWSU are the CropWatch Spatial Units, including MRUs, MPZ, and countries (including first-level administrative districts in select large countries). For all indicators, high values indicate "good" or "positive."

BIOMSS								
Biomass accumulation potential								
Crop/	Grams dry	An estimate of biomass that could	Biomass is presented as maps by pixels, maps					
Ground	, matter/m ² , pixel	potentially be accumulated over the	showing average pixels values over CropWatch					
and	or CWSU	reference period given the prevailing	spatial units (CWSU), or tables giving average values					
satellite		rainfall and temperature conditions.	for the CWSU. Values are compared to the average					
		·	value for the recent fifteen years (2006-2020), with					
			departures expressed in percentage.					
CALF								
Cropped a	able land and cron	ped arable land fraction						
Cron/	[0 1] number	The area of cronned arable land as	The value shown in tables is the maximum value of					
Satellite	nivel or CWSU	fraction of total (cronned and	the 8 values available for each nivel: mans show an					
Jatemite	average	uncropped) arable land Whether a	area as cronned if at least one of the 8 observations					
	average	nivel is cropped or not is desided	is categorized as "cropped " Uncropped moans that					
		based on NDV/I twice a month (For	as crops were detected over the whole reporting					
		based on NDVI twice a month. (For	no crops were detected over the whole reporting					
		each rivel thus has 0 groups of (for the last five warm (2016, 2020) with departures					
		each pixel thus has 8 cropped/	for the last live years (2010-2020), with departures					
		uncropped values).	expressed in percentage.					
CROPPING								
Cropping in	itensity index							
Crop/	0, 1, 2, or 3;	Cropping intensity index describes the	Cropping intensity is presented as maps by pixels					
Satellite	Number of	extent to which arable land is used over	or spatial average pixels values for MPZs, 42					
	crops growing	a year. It is the ratio of the total crop	countries, and 7 regions for China. Values are					
	over a year for	area of all planting seasons in a year to	compared to the average of the previous five					
	each pixel	the total area of arable land.	years, with departures expressed in percentage.					
NDVI								
Normalized	d Difference Vegeta	tion Index						
Crop/	[0.12-0.90]	An estimate of the density of living	NDVI is shown as average profiles over time at					
Satellite	number, pixel or	green biomass.	the national level (cropland only) in crop					
	CWSU average		condition development graphs, compared with					
			previous year and recent five-year average (2016-					
			2020), and as spatial patterns compared to the					
			average showing the time profiles, where they					
			occur, and the percentage of pixels concerned by					
			each profile.					
RADPAR								
CropWatch	indicator for Photo	osynthetically Active Radiation (PAR), ba	sed on pixel based PAR					
Weather	W/m ² , CWSU	The spatial average (for a CWSU) of PAR	RADPAR is shown as the percent departure of the					
/Satellite		accumulation over agricultural pixels,	RADPAR value for the reporting period compared					
		weighted by the production potential.	to the recent fifteen-year average (2006-2020),					
			per CWSU. For the MPZs, regular PAR is shown as					
			typical time profiles over the spatial unit, with a					
			map showing where the profiles occur and the					
			percentage of pixels concerned by each profile.					
RAIN								
CropWatch indicator for rainfall, based on pixel-based rainfall								
Weather	Liters/m ² . CWSU	The spatial average (for a CWSU) of	RAIN is shown as the percent departure of the					
/Ground	,,	rainfall accumulation over agricultural	RAIN value for the reporting period, compared to					

INDICATOR						
and		pixels, weighted by the production	the recent fifteen-year average (2006-2020), per			
satellite		potential.	CWSU. For the MPZs, regular rainfall is shown as			
			typical time profiles over the spatial unit, with a			
			map showing where the profiles occur and the			
			percentage of pixels concerned by each profile.			
TEMP						
CropWatch	n indicator for air te	mperature, based on pixel-based tempera	ture			
Weather	°C, CWSU	The spatial average (for a CWSU) of the	TEMP is shown as the departure of the average			
/Ground		temperature time average over	TEMP value (in degrees Centigrade) over the			
		agricultural pixels, weighted by the	reporting period compared with the average of			
		production potential.	the recent fifteen years (2006-2020), per CWSU.			
			For the MPZs, regular temperature is illustrated			
			as typical time profiles over the spatial unit, with			
			a map showing where the profiles occur and the			
			percentage of pixels concerned by each profile.			
VCIx						
Maximum	vegetation conditio	n index				
Crop/	Number, pixel	Vegetation condition of the current	VCIx is calculated based on time series NDVI			
Satellite	to CWSU	season compared with historical data.	during the monitoring period and the same			
		Values usually are [0, 1], where 0 is	period during the past five years. Peak NDVI			
		"NDVI as bad as the worst recent year"	during the monitoring period was compared with			
		and 1 is "NDVI as good as the best	the maximum NDVI during the same period for			
		recent year." Values can exceed the	the previous five years. VCIx is shown as pixel-			
		range if the current year is the best or	based maps and as average value by CWSU.			
		the worst.				
VHI						
Vegetation	health index					
Crop/	Number, pixel	The average of VCI and the	Low VHI values indicate unusually poor crop			
Satellite	to CWSU	temperature condition index (TCI), with	condition, but high values, when due to low			
		TCI defined like VCI but for	temperature, may be difficult to interpret. VHI is			
		temperature. VHI is based on the	shown as typical time profiles over Major			
		assumption that "high temperature is	Production Zones (MPZ), where they occur, and			
		bad" (due to moisture stress), but	the percentage of pixels concerned by each			
		ignores the fact that low temperature	profile.			
		may be equally "bad" (crops develop				
		and grow slowly, or even suffer from				
		frost).				
VHIN						
Winimum	vegetation health in					
Crop/	Number, pixel	VHIN is the lowest VHI value for every	Low VHIN values indicate the occurrence of water			
Satellite	to CWSU	pixel over the reporting period. Values	stress in the monitoring period, often combined			
		usually are [U, 100]. Normally, values	with lower than average rainfall. The spatial/time			
		lower than 35 indicate poor crop	resolution of Cropwatch VHIn is 16km/week for			
		condition.	MPZs and 1km/dekad for China.			

Note: Type is either "Weather" or "Crop"; source specifies if the indicator is obtained from ground data, satellite readings, or a combination; units: in the case of ratios, no unit is used; scale is either pixels or large scale CropWatch spatial units (CWSU). Many indicators are computed for pixels but represented in the CropWatch bulletin at the CWSU scale.

CropWatch spatial units (CWSU)

CropWatch analyses are applied to four kinds of CropWatch spatial units (CWSU): Countries, China, Major Production Zones (MPZ), and global crop Monitoring and Reporting Units (MRU). The tables below

summarize the key aspects of each spatial unit and show their relation to each other. For more details about these spatial units and their boundaries, see the CropWatch bulletin online resources.

200 | CROPWATCH BULLETIN, February 2021

Countries (and first-level administrative districts, e.g., states and provinces)

Description

Overview "Forty two plus one" countries to represent main producers/exporters and other key countries.

CropWatch monitored countries together represent more than 80% of the production of maize, rice, wheat and soybean, as well as 80% of exports. Some countries were included in the list based on criteria of proximity to China (Uzbekistan, Cambodia), regional importance, or global geopolitical relevance (e.g., four of five most populous countries in Africa). The total number of countries monitored is "42 + 1," referring to 42 and China itself. For the nine largest countries—, United States, Brazil, Argentina, Russia, Kazakhstan, India, China, and Australia, maps and analyses may also present results for the first-level administrative subdivision. The CropWatch agroclimatic indicators are computed for all countries and included in the analyses when abnormal conditions occur. Background information about the countries' agriculture and trade is available on the CropWatch Website, **www.cropwatch.com.cn**.

Major Production Zones (MPZ)

Overview	Description
Six globally	The six MPZs include West Africa, South America, North America, South and Southeast Asia, Western Europe and
important areas of	Central Europe to Western Russia. The MPZs are not necessarily the main production zones for the four crops
agricultural	(maize, rice, soybean, wheat) currently monitored by CropWatch, but they are globally or regionally important
production	areas of agricultural production. The seven zones were identified based mainly on production statistics and
	distribution of the combined cultivation area of maize, rice, wheat and soybean.

Global Monitoring and Reporting Unit (MRU)

Description

Overview
65 agro-
ecological/agro-
economic units
across the world

MRUs are reasonably homogeneous agro-ecological/agro-economic units spanning the globe, selected to capture major variations in worldwide farming and crops patterns while at the same time providing a manageable (limited) number of spatial units to be used as the basis for the analysis of environmental factors affecting crops. Unit numbers and names are shown in the figure below. A limited number of units (e.g., MRU-63 to 65) are not relevant for the crops currently monitored by CropWatch but are included to allow for more complete coverage of global production. Additional information about the MRUs is provided online under **www.cropwatch.com.cn**.

Production estimation methodology

The main concept of the CropWatch methodology for estimating production is the calculation of current year production based on information about last year's production and the variations in crop yield and cultivated area compared with the previous year. The equation for production estimation is as follows:

 $Production_{i} = Production_{i-1} * (1 + \Delta Yield_{i}) * (1 + \Delta Area_{i})$

Where i is the current year, $\Delta Yield_i$ and $\Delta Area_i$ are the variations in crop yield and cultivated area compared with the previous year; the values of $\Delta Yield_i$ and $\Delta Area_i$ can be above or below zero.

For the 42 countries monitored by CropWatch, yield variation for each crop is calibrated against NDVI time series, using the following equation:

$$\Delta Yield_i = f(NDVI_i, NDVI_{i-1})$$

Where $NDVI_i$ and $NDVI_{i-1}$ are taken from the time series of the spatial average of NDVI over the crop specific mask for the current year and the previous year. For NDVI values that correspond to periods after the current monitoring period, average NDVI values of the previous five years are used as an average expectation. $\Delta Yield_i$ is calculated by regression against average or peak NDVI (whichever yields the best regression), considering the crop phenology of each crop for each individual country.

A different method is used for areas. For China, CropWatch combines remote-sensing based estimates of the crop planting proportion (cropped area to arable land) with a crop type proportion (specific type area to total cropped area). The planting proportion is estimated based on an unsupervised classification of high resolution satellite images from HJ-1 CCD and GF-1 images. The crop-type proportion for China is obtained by the GVG instrument from field transects. The area of a specific crop is computed by multiplying farmland area, planting proportion, and crop-type proportion of the crop.

To estimate crop area for wheat, soybean, maize, and rice outside China, CropWatch relies on the regression of crop area against cropped arable land fraction of each individual country (paying due attention to phenology):

$Area_i = a + b * CALF_i$

where a and b are the coefficients generated by linear regression with area from FAOSTAT or national sources and CALF the Cropped Arable Land Fraction from CropWatch estimates. $\Delta Area_i$ can then be calculated from the area of current and the previous years.

The production for "other countries" (outside the 31 CropWatch monitored countries) was estimated as the linear trend projection for 2019 of aggregated FAOSTAT data (using aggregated world production minus the sum of production by the 31 CropWatch monitored countries).

Data notes and bibliography

Notes

- [1]. https://apnews.com/article/brazil-paraguay-droughts-archive-f7538b9e0d499a4d27961a2fae3f18ce
- [2]. http://www.bom.gov.au/climate/current/soi2.shtml
- [3]. http://www.bom.gov.au/climate/enso/wrap-up/archive/20210216.ssta_pacific_monthly.png?popup
- [4]. https://www.climate.gov/sites/default/files/Fig3_ENSOindices_SST_large.png
- [5]. https://coronavirus.jhu.edu/map.html
- [6]. https://cropmonitor.org/documents/SPECIAL/reports/Special_Report_20201215_Central_America.p df
- [7]. https://www.denverpost.com/2020/10/17/jamestown-evacuated-calwood-fire/
- [8]. https://disasterphilanthropy.org/disaster/super-typhoon-goni/
- [9]. http://www.fao.org/ag/locusts/common/ecg/75/en/210216DLupdate.jpg
- [10]. http://www.fao.org/3/i5128e/i5128e.pdf
- [11]. http://www.fao.org/ag/locusts/en/info/info/index.html
- [12]. https://www.fb.org/market-intel/whats-in-the-new-covid-19-relief-package-for-agriculture
- [13]. https://industrytoday.com/how-covid-19-has-affected-the-agriculture-industry/
- [14]. https://www.mckinsey.com/industries/healthcare-systems-and-services/our-insights/when-will-thecovid-19-pandemic-end
- [15]. https://news.un.org/en/story/2020/11/1077142
- [16]. https://www.paho.org/en/natural-disasters-monitoring/natural-disasters-monitoring-february-12-2021
- [17]. https://phys.org/news/2021-01-grim-year-brazilian-amazon.html
- [18]. https://ticotimes.net/2020/11/06/central-america-evaluates-the-destruction-caused-by-cyclone-eta

References

FAO. 2020. Crop Prospects and Food Situation - Quarterly Global Report No. 4, December 2020. GIEWS, 2020, conforms to the United Nations map No. 4170 Rev. 19, 2020.

OECD-FAO 2016 Agricultural Outlook 2016-2025. INCOMPLETE.

Acknowledgments

This bulletin is produced by the CropWatch research team at the Aerospace Information Research Institute (AIR), at the Chinese Academy of Sciences in Beijing, China. The team gratefully acknowledges the active support of a range of organizations and individuals, both in China and elsewhere.

Financial and programmatic support is provided by the Ministry of Science and Technology of the People's Republic of China, National Natural Science Foundation of China, and the Chinese Academy of Sciences. We specifically would like to acknowledge the financial support through The National Key Research and Development Program of China, Grant No:2016YFA0600300; National Natural Science Foundation, Grant No: 41561144013; the Strategic Priority Research Program of Chinese Academy of Sciences Grant No: XDA1903020; the Key Collaborative Research Program of the Alliance of International Science Organizations Grant No. ANSO-CR-KP-2020-07.

The following contributions by national organizations and individuals are greatly appreciated: China Center for Resources Satellite Data and Application for providing the HJ-1 CCD data; China Meteorological Satellite Center for providing FY-2/3 data; China Meteorological Data Sharing Service System for providing the agro-meteorological data; and Chia Tai Group (China) for providing GVG (GPS, Video, and GIS) field sampling data; short-term weather forecasts, medium- and long-term (extended-period) forecasts and seasonal forecasts from the FGOALS-f2 Weather-Climate Dynamics Ensemble Prediction System provided by the Atmospheric Physics Research Belt and Road Disaster Prevention Service (ANSO-MISSPAD) project, Chinese Academy of Sciences dataset and the National Centers for Environmental Prediction (NCEP) Climate Prediction System version 2 reanalysis data (Coupled forecast system model version 2, CFSv2).

The following contributions by international organizations and individuals are also recognized: François Kayitakire at FOODSEC/JRC for making available and allowing use of their crop masks; Ferdinando Urbano also at FOODSEC/JRC for his help with data; Herman Eerens, Dominique Haesen, and Antoine Royer at VITO, for providing the JRC/MARS SPIRITS software, Spot Vegetation imagery and growing season masks, together with generous advice; Patrizia Monteduro and Pasquale Steduto for providing technical details on GeoNetwork products; and IIASA and Steffen Fritz for their land use map.

Online resources

Online Resources posted on www.cropwatch.com.cn , http://cloud.cropwatch.com.cn/

This bulletin is only part of the CropWatch resources available. Visit **www.cropwatch.com.cn** for access to additional resources, including the methods behind CropWatch, country profiles, and other CropWatch publications. For additional information or to access specific data or high-resolution graphs, simply contact the CropWatch team at **cropwatch@radi.ac.cn**.

CropWatch bulletins introduce the use of several new and experimental indicators. We would be very interested in receiving feedback about their performance in other countries. With feedback on the contents of this report and the applicability of the new indicators to global areas, please contact:

Professor Bingfang Wu

Aerospace Information Research Institute Chinese Academy of Sciences, Beijing, China E-mail: cropwatch@radi.ac.cn, wubf@radi.ac.cn