

May 2023

Aerospace Information Research Institute (AIR), Chinese Academy of Sciences

P.O. Box 9718-29, Olympic Village Science Park West Beichen Road, Chaoyang Beijing 100101, China

This bulletin is produced by the CropWatch research team, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences, under the overall guidance of Professor Bingfang Wu.

Contributors are Diego de Abelleyra (Argentina), Rakiya Babamaaji (NASRDA, Nigeria), Jose Bofana (Mozambique), Mengwei Chen (Henan, China), Sheng Chang, Mansour Djamel (Algeria), Abdelrazek Elnashar (Egypt), Li Fu, Zhijun Fu, Wenwen Gao (Shanxi, China), Yueran Hu, Yang Jiao (Hubei, China), Kangjian Jing, Hamzat Ibrahim (NASRDA, Nigeria), Riham Khozam(Syria), Mengxiao Li, Yuanchao Li, Zhongyuan Li (Hubei, China), Wenjun Liu (Yunnan, China), Xiaoyan Liu (Anhui, China), Yuming Lu, Zonghan Ma, Linghua Meng (Jilin, China), Elijah Phiri (Zambia), Elena Proudnikova (Russia), Xingli Qin, Igor Savin (Russia), Jatuporn Nontasiri (OAE, Thailand), Buchsarawan Srilertworakul (OAE, Thailand), Urs Christoph Schulthess (CIMMYT), Grace Simon Mbaiorga (NASRDA, Nigeria), Binfeng Sun (Jiangxi, China), Fuyou Tian, Huanfang Wang, Linjiang Wang, Mingxing Wang (Hubei, China), Qiang Wang (Anhui, China), Yixuan Wang, Yuandong Wang (Jiangxi, China), Zhengdong Wang, Bingfang Wu, Yan Xie, Cong Xu, Jiaming Xu (Zhejiang, China), Nana Yan, Leidong Yang, Zhishan Ye (Anhui, China), Hongwei Zeng, Miao Zhang, Weiye Zang (Hubei, China), Xiwang Zhang (Henan, China), Dan Zhao, Hang Zhao, Xinfeng Zhao, Yifan Zhao (Henan, China), Zhaoju Zheng, Liang Zhu, Weiwei Zhu, and Qifeng Zhuang (Jiangsu, China).

Editor: Zonghan Ma

Corresponding author: Professor Bingfang Wu

Aerospace Information Research Institute, Chinese Academy of Sciences Fax: +8610-64858721, E-mail: cropwatch@radi.ac.cn, wubf@aircas.ac.cn

CropWatch Online Resources: The data and charts of this report are available at

http://cloud.cropwatch.com.cn/.

Disclaimer: This bulletin is a product of the CropWatch research team at the Aerospace Information Research Institute (AIR), Chinese Academy of Sciences. The findings and analyses described in this bulletin do not necessarily reflect the views of the Institute or the Academy and the Aerospace Information Research Institute (AIR); the CropWatch team also does not guarantee the accuracy of the data included in this work. AIR and CAS are not responsible for any losses as a result of the use of this data. The boundaries used for the maps are the GAUL boundaries (Global Administrative Unit Layers) maintained by FAO; where applicable official Chinese boundaries have been used. The boundaries and markings on the maps do not imply a formal endorsement or opinion by any of the entities involved with this bulletin.

Contents

NOTE: CROPWATCH RESOURCES, BACKGROUND MATERIALS AND AVAILABLE ONLINE AT WWW.CROPWATCH.COM.CN.) ADDITIONAL DATA ARE
CONTENTS	1
LIST OF TABLES	
LIST OF FIGURES	
ABBREVIATIONS	X
BULLETIN OVERVIEW AND REPORTING PERIOD	XI
EXECUTIVE SUMMARY	13
CHAPTER 1. GLOBAL AGROCLIMATIC PATTERNS	15
1.1 INTRODUCTION TO CROPWATCH AGROCLIMATIC INDICATORS (CWAIS)	
1.2 Global overview	
1.3 RAINFALL	
1.4 TEMPERATURES	
1.5 RADPAR	
CHAPTER 2. CROP AND ENVIRONMENTAL CONDITIONS IN MAJOR F 2.1 Overview	
2.2 West Africa	
2.3 NORTH AMERICA	
2.4 SOUTH AMERICA	
2.5 South and Southeast Asia	
2.6 WESTERN EUROPE	
2.7 Central Europe to Western Russia	30
CHAPTER 3. CORE COUNTRIES	33
3.1 Overview	
3.2 COUNTRY ANALYSIS	37
CHAPTER 4. CHINA	178
4.1 Overview	178
4.2 CHINA'S CROP PRODUCTION	_
4.3 REGIONAL ANALYSIS	
4.4 MAJOR CROPS TRADE PROSPECTS	
CHAPTER 5. FOCUS AND PERSPECTIVES	
5.1 CropWatch food production estimates	
5.2 DISASTER EVENTS	
5.3 UPDATE ON EL NIÑO	
ANNEX A. AGROCLIMATIC INDICATORS AND BIOMSS	212
ANNEX B. QUICK REFERENCE TO CROPWATCH INDICATORS, SPATIA	
METHODOLOGIES	221
DATA NOTES AND BIBLIOGRAPHY	231
ACKNOWLEDGMENTS	235
ONLINE RESOURCES	236

LIST OF TABLES

TABLE 2.1 AGROCLIMATIC INDICATORS BY MAJOR PRODUCTION ZONE, CURRENT VALUE A	.ND
DEPARTURE FROM 15YA (JANUARY-APRIL 2023)	19
TABLE 2.2 AGRONOMIC INDICATORS BY MAJOR PRODUCTION ZONE, CURRENT SEASON	
VALUES AND DEPARTURE FROM 5YA (JANUARY-APRIL 2023)	20
TABLE 3.1 AFGHANISTAN'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURF	RENT
SEASON'S VALUES AND DEPARTURE FROM 15YA, JANUARY - APRIL 2023	40
TABLE 3.2 AFGHANISTAN'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURREI	TV
SEASON'S VALUES AND DEPARTURE FROM 5YA, JANUARY - APRIL 2023	40
TABLE 3.4 ANGOLA'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT	
SEASON'S VALUES AND DEPARTURE FROM 5YA, JANUARY – APRIL 2023	43
TABLE 3.5 ARGENTINA'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURREN	1T
SEASON'S VALUES AND DEPARTURE FROM 15YA, JANUARY - APRIL 2023	46
TABLE 3.6 ARGENTINA'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT	
SEASON'S VALUES AND DEPARTURE FROM 5YA, JANUARY - APRIL 2023	47
TABLE 3.7 AUSTRALIA AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT	
SEASON'S VALUES AND DEPARTURE FROM 15YA, JANUARY - APRIL 2023	50
TABLE 3.8 AUSTRALIA'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT	
SEASON'S VALUES AND DEPARTURE FROM 5YA, JANUARY - APRIL 2023	50
TABLE 3.9 BANGLADESH'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURR	ENT
SEASON'S VALUES AND DEPARTURE FROM 15YA, JANUARY-APRIL 2023	53
TABLE 3.10 BANGLADESH'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRE	:NT
SEASON'S VALUES AND DEPARTURE FROM 5YA, JANUARY-APRIL 2023	54
TABLE 3.11 BELARUS'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT	
SEASON'S VALUES AND DEPARTURE FROM 15YA, JANUARY-APRIL 2023	57
TABLE 3.12 BELARUS'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT	
SEASON'S VALUES AND DEPARTURE FROM 5YA, JANUARY-APRIL 2023	57
TABLE 3.13 BRAZIL'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT	
SEASON'S VALUES AND DEPARTURE FROM 15YA, JANUARY-APRIL 2023	62
TABLE 3.14 BRAZIL'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT	
SEASON'S VALUES AND DEPARTURE FROM 5YA, JANUARY-APRIL 2023	
TABLE 3.15 CANADA'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT	
SEASON'S VALUES AND DEPARTURE FROM 15YA, JANUARY - APRIL 2023	64
TABLE 3.16 CANADA'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT	
SEASON'S VALUES AND DEPARTURE FROM 5YA, JANUARY - APRIL 2023	
TABLE 3.17 GERMANY'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURREN	
SEASON'S VALUES AND DEPARTURE FROM 15YA, JANUARY-APRIL 2023	
TABLE 3.18 GERMANY'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT	
SEASON'S VALUES AND DEPARTURE FROM 5YA, JANUARY-APRIL 2023	68
TABLE 3.19 EGYPT'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT	
SEASON'S VALUES, AND DEPARTURE FROM 15YA, JANUARY-APRIL 2023	/0
TABLE 3.20 EGYPT'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT	
SEASON'S VALUES, AND DEPARTURE FROM 5YA, JANUARY-APRIL 2023	
TABLE 3.21 ETHIOPIA'S AGROCLIMATIC INDICATORS BY SUB - NATIONAL REGIONS, CURREN	
SEASON'S VALUES AND DEPARTURE FROM 15YA, JANUARY – APRIL 2023	73

TABLE 3.22 ETHIOPIA'S AGRONOMIC INDICATORS BY SUB - NATIONAL REGIONS, CURRENT
SEASON'S VALUES AND DEPARTURE FROM 5YA, JANUARY – APRIL 202374
TABLE 3.23 FRANCE'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT
SEASON'S VALUES AND DEPARTURE FROM 15YA, JANUARY 2023 – APRIL 202377
TABLE 3.24 FRANCE'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT
SEASON'S VALUES AND DEPARTURE FROM 5YA, JANUARY 2023 – APRIL 2023
TABLE 3.25 UNITED KINGDOM'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS,
CURRENT SEASON'S VALUES AND DEPARTURE FROM 15YA, JANUARY - APRIL 2023
TABLE 3.26 UNITED KINGDOM'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS,
CURRENT SEASON'S VALUES AND DEPARTURE FROM 5YA, JANUARY - APRIL 2023
TABLE 3.27 INDONESIA'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT
· · · · · · · · · · · · · · · · · · ·
SEASON'S VALUES AND DEPARTURE FROM 15YA, JANUARY – APRIL 202384
TABLE 3.28 INDONESIA'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT
SEASON'S VALUES AND DEPARTURE FROM 5YA, JANUARY – APRIL 2023
TABLE 3.29 INDIA'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT
SEASON'S VALUES AND DEPARTURE FROM 15YA, JANUARY - APRIL 2023
TABLE 3.30 INDIA'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT
SEASON'S VALUES AND DEPARTURE FROM 5YA, JANUARY - APRIL 202388
TABLE 3.31 IRAN'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT
SEASON'S VALUES AND DEPARTURE FROM 15YA, JANUARY 2023 - APRIL 202391
TABLE 3.32 IRAN'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S
VALUES AND DEPARTURE FROM 5YA, JANUARY 2023 - APRIL 202391
TABLE 3.33 ITALY'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT
SEASON'S VALUES AND DEPARTURE FROM 15YA, JANUARY - APRIL 202394
TABLE 3.34 ITALY'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT
SEASON'S VALUES AND DEPARTURE FROM 5YA, JANUARY - APRIL 202394
TABLE 3.35 KAZAKHSTAN AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT
SEASON'S VALUES AND DEPARTURE FROM 15YA, JANUARY – APRIL 202397
TABLE 3.36 KAZAKHSTAN, AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT
SEASON'S VALUES AND DEPARTURE FROM 5YA, JANUARY – APRIL 202397
TABLE 3.37 KENYA'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT
SEASON'S VALUES AND DEPARTURE FROM 15YA,
JANUARY-APRIL 2023
TABLE 3.38 KENYA'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT
SEASON'S VALUES AND DEPARTURE,
JANUARY-APRIL 2023
TABLE 3.39 KYRGYZSTAN'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT
SEASON'S VALUES AND DEPARTURE FROM 15YA, JANUARY - APRIL 2023
TABLE 3.40 KYRGYZSTAN'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT
SEASON'S VALUES AND DEPARTURE FROM 5YA, JANUARY - APRIL 2023
TABLE 3.41 CAMBODIA'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT
SEASON'S VALUES, AND DEPARTURE FROM 15YA, JANUARY – APRIL 2023
TABLE 3.42 CAMBODIA'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT
SEASON'S VALUES, AND DEPARTURE FROM 5YA, JANUARY - APRIL 2023
TABLE 3.43 SRI LANKA'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT
SEASON'S VALUES AND DEPARTURE FROM 15YA, JANUARY - APRIL 2023
TABLE 3.44 SRI LANKA'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT
SEASON'S VALUES AND DEPARTURE FROM 5YA TANUARY - APRIL 2023 109

TABLE 3.46 MOROCCO'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT	
SEASON'S VALUES, AND DEPARTURE FROM 5YA, JANUARY-APRIL 2023112	2
TABLE 3.47 MEXICO'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT	
SEASON'S VALUES AND DEPARTURE FROM 15YA, JANUARY - APRIL 2023	5
TABLE 3.48 MEXICO'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT	
SEASON'S VALUES AND DEPARTURE FROM 5YA, JANUARY - APRIL 2023	5
TABLE 3.49 MYANMAR'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT	
SEASON'S VALUES AND DEPARTURE FROM 15YA, JANUARY - APRIL 2023118	8
TABLE 3.50 MYANMAR'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT	
SEASON'S VALUES AND DEPARTURE FROM 5YA, JANUARY - APRIL 2023118	8
TABLE 3.51 MONGOLIA'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT	
SEASON'S VALUES, AND DEPARTURE FROM 15YA, JANUARY - APRIL 202312	1
TABLE 3.52 MONGOLIA'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT	
SEASON'S VALUES, AND DEPARTURE FROM 5YA, JANUARY - APRIL 202312	1
TABLE 3.53 MOZAMBIQUE'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS,	
CURRENT SEASON'S VALUES, AND DEPARTURE FROM 15YA, JANUARY - APRIL 202312	5
TABLE 3.54 MOZAMBIQUE'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT	
SEASON'S VALUES, AND DEPARTURE FROM 15YA, JANUARY - APRIL 202312	5
TABLE 3. 55 NIGERIA'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT	
SEASON'S VALUES AND DEPARTURE FROM 15YA, JANUARY - APRIL 202312	9
TABLE 3. 56 NIGERIA'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT	
SEASON'S VALUES AND DEPARTURE FROM 5YA, JANUARY - APRIL 202312	9
TABLE 3.57 PAKISTAN'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT	
SEASON'S VALUES AND DEPARTURE FROM 15YA, JANUARY - APRIL 202313	3
TABLE 3.58 PAKISTAN'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT	
SEASON'S VALUES AND DEPARTURE FROM 5YA, JANUARY - APRIL 2023	3
TABLE 3.59 PHILIPPINES' AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT	
SEASON'S VALUES, AND DEPARTURE FROM 15YA, JANUARY – APRIL 2023	6
TABLE 3.60 PHILIPPINES' AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT	
SEASON'S VALUES, AND DEPARTURE FROM 5YA, JANUARY – APRIL 2023	6
TABLE 3.61 POLAND'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT	_
SEASON'S VALUES AND DEPARTURE FROM 15YA, JANUARY - APRIL 2023	9
TABLE 3.62 POLAND'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT	_
SEASON'S VALUES AND DEPARTURE FROM 5YA, JANUARY - APRIL 2023	9
TABLE 3.63 ROMANIA'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT	_
SEASON'S VALUES AND DEPARTURE FROM 15YA, JANUARY - APRIL 2023	2
TABLE 3.62 ROMANIA'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT	_
SEASON'S VALUES AND DEPARTURE FROM 5YA, JANUARY - APRIL 2023	2
TABLE 3.65 RUSSIA'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT SEASON'S VALUES AND DEPARTURE FROM 15YA, JANUARY – APRIL 2023	,
TABLE 3.66 RUSSIA'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT	0
SEASON'S VALUES AND DEPARTURE FROM 5YA, JANUARY – APRIL 2023	7
TABLE 3.67 THAILAND'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT	/
VALUES AND DEPARTURE OF 15YA, JANUARY-APRIL 2023	\cap
TABLE 3.68 THAILAND'S CROPPED ARABLE LAND FRACTION (CALF) AND CURRENT MAXIMUM	U
VCI VALUES, JANUARY-APRIL 2023	1
TABLE 3.69TÜRKIYE'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT	•
SEASON'S VALUES AND DEPARTURE FROM 15YA, JANUARY 2023 - APRIL 2023	4
	•

TABLE 3.70 TÜRKIYE'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT	
SEASON'S VALUES AND DEPARTURE FROM 5YA, JANUARY 2023 - APRIL 2023	155
TABLE 3.71 UKRAINE'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT	Ī
SEASON'S VALUES AND DEPARTURE FROM 15YA, JANUARY – APRIL 2023	158
TABLE 3.72 UKRAINE'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT	
SEASON'S VALUES AND DEPARTURE FROM 5YA, JANUARY – APRIL 2023	158
TABLE 3.73 UNITED STATES' AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURI	
SEASON'S VALUES AND DEPARTURE FROM 15YA, JANUARY - APRIL 2023	
TABLE 3.74 UNITED STATES'AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRE	
SEASON'S VALUES AND DEPARTURE, OCTOBER JANUARY - APRIL 2023	
TABLE 3.75 UZBEKISTAN'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRI	
SEASON'S VALUES AND DEPARTURE FROM 15YA, JANUARY - APRIL 2023	
TABLE 3.76 UZBEKISTAN'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURREN	
SEASON'S VALUES AND DEPARTURE FROM 5YA, JANUARY - APRIL 2023	
TABLE 3.77 VIETNAM'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT	
SEASON'S VALUES AND DEPARTURE FROM 15YA, JANUARY-APRIL 2023	
TABLE 3.78 VIETNAM'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT	17 1
SEASON'S VALUES AND DEPARTURE FROM 5YA, JANUARY-APRIL 2023	172
TABLE 3.79 SOUTH AFRICA'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS,	1/2
CURRENT SEASON'S VALUES AND DEPARTURE FROM 15YA, JANUARY - APRIL 2023	175
TABLE 3.80 SOUTH AFRICA'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURF	
SEASON'S VALUES AND DEPARTURE FROM 5YA, JANUARY - APRIL 2023	
TABLE 3.81 ZAMBIA'S AGROCLIMATIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT	1/3
SEASON'S VALUES AND DEPARTURE FROM 15YA, JANUARY - APRIL2023	177
TABLE 3.82 ZAMBIA'S AGRONOMIC INDICATORS BY SUB-NATIONAL REGIONS, CURRENT	1//
SEASON'S VALUES AND DEPARTURE FROM 5YA, JANUARY - APRIL2023	177
TABLE 4.1 CROPWATCH AGROCLIMATIC AND AGRONOMIC INDICATORS FOR CHINA,	1//
JANUARY - APRIL 2023, DEPARTURE FROM 5YA AND 15YA	170
TABLE 4.2 CHINA'S WINTER CROP PRODUCTION	
TABLE 4.3 CHINA'S WINTER WHEAT PRODUCTION	
TABLE 5.1 2023 CEREAL AND SOYBEAN PRODUCTION ESTIMATES IN THOUSAND TONNES. Δ	
	13
THE PERCENTAGE OF CHANGE OF 2023 PRODUCTION WHEN COMPARED WITH	100
CORRESPONDING 2022 VALUES.	
TABLE 5.2ANOMALIES OF ONIS (°C), JANUARY TO APRIL 2023	
(SOURCE: HTTPS://WWW.CPC.NCEP.NOAA.GOV/DATA/INDICES/SSTOI.INDICES)	
TABLE A.1 JANUARY - APRIL 2023 AGROCLIMATIC INDICATORS AND BIOMASS BY GLOBAL	
MONITORING AND REPORTING UNIT (MRU)	
TABLE A.2 JANUARY - APRIL 2023 AGROCLIMATIC INDICATORS AND BIOMASS BY COUNTRY	
TABLE A.3 JANUARY - APRIL 2023 AGROCLIMATIC INDICATORS AND BIOMASS (BY PROVIN	
TABLE A.4 JANUARY - APRIL 2023 AGROCLIMATIC INDICATORS AND BIOMASS (BY STATE)	
TABLE A.5 JANUARY - APRIL 2023 AGROCLIMATIC INDICATORS AND BIOMASS (BY STATE) .	
TABLE A.6 CANADA, JANUARY - APRIL 2023 AGROCLIMATIC INDICATORS AND BIOMASS	•
PROVINCE)	217
TABLE A.7 INDIA, JANUARY - APRIL 2023 AGROCLIMATIC INDICATORS AND BIOMASS (BY	
STATE)	
TABLE A.8 KAZAKHSTAN, JANUARY - APRIL 2023 AGROCLIMATIC INDICATORS AND BIOMA	
(BY OBLAST)	218

VI| CropWatch Bulletin, May 2023

TABLE A.9 RUSSIA, JANUARY - APRIL 2023 AGROCLIMATIC INDICATORS AND BIC)MASS (BY
OBLAST, KRAY AND REPUBLIC)	218
TABLE A.10 UNITED STATES, JANUARY - APRIL 2023 AGROCLIMATIC INDICATORS	S AND BIOMASS
(BY STATE)	219
TABLE A.11 CHINA, JANUARY - APRIL 2023 AGROCLIMATIC INDICATORS AND B	IOMASS (BY
PROVINCE)	220

LIST OF FIGURES

FIGURE 1.1 GLOBAL MAP OF RAINFALL ANOMALY (AS INDICATED BY THE RAIN INDICATOR) BY
CROPWATCH MAPPING AND REPORTING UNIT: DEPARTURE OF JANUARY 2023 TO APP	₹IL
2023 TOTAL FROM 2008-2022 AVERAGE (15YA), IN PERCENT	16
FIGURE 1.2 GLOBAL MAP OF TEMPERATURE ANOMALY (AS INDICATED BY THE TEMP	
INDICATOR) BY CROPWATCH MAPPING AND REPORTING, UNIT: DEPARTURE OF JANU	JARY
2023 TO APRIL 2023 AVERAGE FROM 2008-2022 AVERAGE (15YA), IN °C	17
FIGURE 1.3 GLOBAL MAP OF PHOTOSYNTHETICALLY ACTIVE RADIATION ANOMALY (AS	
INDICATED BY THE RADPAR INDICATOR) BY CROPWATCH MAPPING AND REPORTING	UNIT:
DEPARTURE OF JANUARY 2023 TO APRIL 2023 AVERAGE FROM 2008-2022 AVERAGE	
(15YA), IN PERCENT	17
FIGURE 1.4 GLOBAL MAP OF BIOMASS ACCUMULATION (AS INDICATED BY THE BIOMSS	
INDICATOR) BY CROPWATCH MAPPING AND REPORTING UNIT: DEPARTURE OF JANUA	۱RY
2023 TO APRIL 2023 AVERAGE FROM 2008-2022 AVERAGE (15YA), IN PERCENT	
FIGURE 2.1 WEST AFRICA MPZ: AGROCLIMATIC AND AGRONOMIC INDICATORS, JANUARY	
APRIL 2023.	
FIGURE 2.2 NORTH AMERICA MPZ: AGROCLIMATIC AND AGRONOMIC INDICATORS, JANU	JARY
- APRIL 2023	22
FIGURE 2.3 SOUTH AMERICA MPZ: AGROCLIMATIC AND AGRONOMIC INDICATORS, JANU	
- APRIL 2023	24
FIGURE 2.4 SOUTH AND SOUTHEAST ASIA MPZ: AGROCLIMATIC AND AGRONOMIC	
INDICATORS, JANUARY 2023 TO APRIL 2023	26
FIGURE 2.5 WESTERN EUROPE MPZ: AGROCLIMATIC AND AGRONOMIC INDICATORS,	
JANUARY-APRIL 2023	29
FIGURE 2.6 CENTRAL EUROPE TO WESTERN RUSSIA MPZ: AGROCLIMATIC AND AGRONOMI	
INDICATORS, JUANUARY-APRIL 2023.	31
FIGURE 3.1 NATIONAL AND SUBNATIONAL RAINFALL ANOMALY (AS INDICATED BY THE RAII	Ν
INDICATOR) OF JANUARY 2023 TO APRIL 2023 TOTAL RELATIVE TO THE 2008-2022	
AVERAGE (15YA), IN PERCENT	35
FIGURE 3.2 NATIONAL AND SUBNATIONAL SUNSHINE ANOMALY (AS INDICATED BY THE TEM	۱P
INDICATOR) OF JANUARY 2023 TO APRIL 2023 TOTAL RELATIVE TO THE 2008-2022	
AVERAGE (15YA), IN °C	
FIGURE 3.3 NATIONAL AND SUBNATIONAL SUNSHINE ANOMALY (AS INDICATED BY THE RAI	OPAR
INDICATOR) OF JANUARY 2023 TO APRIL 2023 TOTAL RELATIVE TO THE 2008-2022	
AVERAGE (15YA), IN PERCENT	
FIGURE 3.4 NATIONAL AND SUBNATIONAL BIOMASS PRODUCTION POTENTIAL ANOMALY (A	AS
INDICATED BY THE BIOMSS INDICATOR) OF OF JANUARY 2023 TO APRIL 2023 TOTAL	
RELATIVE TO THE 2008-2022 AVERAGE (15YA), IN PERCENT	
FIGURE 3.5 AFGHANISTAN'S CROP CONDITION, JANUARY - APRIL 2023	39
FIGURE 3.6 ANGOLA'S CROP CONDITION, JANUARY – APRIL 2023	41
FIGURE 3.7 ARGENTINA'S CROP CONDITION, JANUARY - APRIL 2023	45
FIGURE 3.8 AUSTRALIA'S CROP CONDITION, JANUARY - APRIL 2023	48
FIGURE 3.9 BANGLADESH'S CROP CONDITION, JANUARY -APRIL 2023	52
FIGURE 3.10 BELARUS'S CROP CONDITION, JANUARY -APRIL 2023.	
FIGURE 3.11 BRAZIL'S CROP CONDITION, JANUARY -APRIL 2023	
FIGURE 3.12 CANADA'S CROP CONDITION JANUARY - APRIL 2023	۲3

FIGURE 3.13 GERMANY'S CROP CONDITION, JANUARY-APRIL 2023	66
FIGURE 3.14 EGYPT'S CROP CONDITION, JANUARY-APRIL 2023	69
FIGURE 3.15ETHIOPIA'S CROP CONDITION, JANUARY - APRIL 2023	72
FIGURE 3.16 FRANCE'S CROP CONDITION, JANUARY 2023 – APRIL 2023	76
FIGURE 3.17 UNITED KINGDOM'S CROP CONDITION, JANUARY - APRIL 2023	79
FIGURE 3.18 INDONESIA'S CROP CONDITION, JANUARY – APRIL 2023	83
FIGURE 3.19 INDIA'S CROP CONDITION, JANUARY - APRIL 2023	86
FIGURE 3.20 IRAN'S CROP CONDITION, JANUARY - APRIL 2023	89
FIGURE 3.21 ITALY'S CROP CONDITION, JANUARY - APRIL 2023	92
FIGURE 3.23 KENYA'S CROP CONDITION, JANUARY-APRIL 2023	99
FIGURE 3.24 KYRGYZSTAN'S CROP CONDITION, JANUARY - APRIL 2023	.102
FIGURE 3.25 CAMBODIA'S CROP CONDITION, JANUARY - APRIL 2023	. 105
FIGURE 3.26 SRI LANKA'S CROP CONDITION, JANUARY - APRIL 2023	.107
FIGURE 3.27 MOROCCO'S CROP CONDITION, JANUARY-APRIL 2023	.110
FIGURE 3.28 MEXICO'S CROP CONDITION, JANUARY - APRIL 2023	.114
FIGURE 3.29 MYANMAR'S CROP CONDITION, JANUARY - APRIL 2023	.116
FIGURE 3.30 MONGOLIA'S CROP CONDITION, JANUARY - APRIL 2023	.119
FIGURE 3.31 MOZAMBIQUE'S CROP CONDITION, JANUARY - APRIL 2023	.123
FIGURE 3.32 NIGERIA'S CROP CONDITION, JANUARY-APRIL 2023	.127
FIGURE 3.33 PAKISTAN CROP CONDITION, JANUARY - APRIL 2023	.131
FIGURE 3.34 PHILIPPINES' CROP CONDITION, JANUARY – APRIL 2023	.134
FIGURE 3.35 POLAND'S CROP CONDITION, JANUARY - APRIL 2023	.138
FIGURE 3.36 ROMANIA'S CROP CONDITION, JANUARY - APRIL 2023	.140
FIGURE 3.37 RUSSIA'S CROP CONDITION, JANUARY – APRIL 2023	.144
FIGURE 3.38 THAILAND'S CROP CONDITION, CROP CALENDAR FROM JANUARY-APRIL 2023	. 149
FIGURE 3.39 TÜRKIYE'S CROP CONDITION, JANUARY - APRIL 2023	.153
FIGURE 3.40 UKRAINE'S CROP CONDITION, JANUARY – APRIL 2023	.156
FIGURE 3.41 UNITED STATES CROP CONDITION, JANUARY TO APRIL 2023	.160
FIGURE 3.42 UZBEKISTAN'S CROP CONDITION, JANUARY - APRIL 2023	.166
FIGURE 3.43 VIETNAM'S CROP CONDITIONS, JANUARY -APRIL 2023	.170
FIGURE 3.44 SOUTH AFRICA'S CROP CONDITION, JANUARY - APRIL 2023	.174
FIGURE 3.45 ZAMBIA'S CROP CONDITION, JANUARY - APRIL 2023	.176
FIGURE 4. 1 CHINA CROP CALENDAR	.179
FIGURE 4.2 CHINA SPATIAL DISTRIBUTION OF RAINFALL PROFILES, JAN TO APR 2023	.180
FIGURE 4.3 CHINA SPATIAL DISTRIBUTION OF TEMPERATURE PROFILES, JAN TO APR 2023	.180
FIGURE 4.4 CHINA CROPPED AND UNCROPPED ARABLE LAND, BY PIXEL, JAN TO APR 2023.	.180
FIGURE 4.5 CHINA MAXIMUM VEGETATION CONDITION INDEX (VCIX), BY PIXEL, JAN TO APR	?
2023	.180
FIGURE 4.6 CHINA BIOMASS DEPARTURE MAP FROM 15YA, BY PIXEL, JAN TO APR 2023	.180
FIGURE 4. 7 CHINA MINIMUM VEGETATION HEALTH INDEX (VHIN), BY PIXEL, JAN TO APR 2023	3
	.180
FIGURE 4. 8 CROP CONDITION CHINA NORTHEAST REGION, JANUARY - APRIL 2023	.185
FIGURE 4. 9 CROP CONDITION CHINA INNER MONGOLIA, JANUARY - APRIL 2023	.186
FIGURE 4. 10 CROP CONDITION CHINA HUANGHUAIHAI, JANUARY - APRIL 2023	. 187
FIGURE 4.11 CROP CONDITION CHINA LOESS REGION, JANUARY - APRIL 2023	.188
FIGURE 4.12 CROP CONDITION CHINA LOWER YANGTZE REGION, JANUARY - APRIL 2023	.190
FIGURE 4.13 CROP CONDITION CHINA SOUTHWEST REGION, JANUARY - APRIL 2023	.192
FIGURE 4.14 CROP CONDITION SOUTHERN CHINA, JANUARY - APRIL 2023	.194

FIGURE 4.15 RATE OF CHANGE OF IMPORTS AND EXPORTS FOR RICE, WHEAT, MAIZE, AND	
SOYBEAN IN CHINA IN 2023 (%)1	96
FIGURE 5.1 DESERT LOCUST SITUATION DURING JANUARY-APRIL 2023 (A-JANUARY, B-	
FEBRUARY, C-MARCH, AND D-APRIL)2	202
FIGURE 5.2 CROPWATCH'S RAINFALL PROFILE IN THE SOUTHERN REGION OF MOZAMBIQUE	
(JANUARY-APRIL 2023)	203
FIGURE 5.3 CMBINED DROUGHT INDICATOR FOR WEST AFRICA FROM JANUARY-APRIL 2023	
(LEFT: VHI, RIGHT: SPI)2	205
FIGURE 5.4 DROUGHT SITUATION IN SOUTH AMERICA AS OF APRIL 2023 BASED ON THE	
STANDARDIZED PRECIPITATION INDEX WITH 4 YEARS ACCUMULATION PERIOD2	206
FIGURE 5.5 SPATIAL DISTRIBUTION OF VEGETATION CONDITIONS BASED ON THE NDVI ACROSS	3
SPAIN (MARCH-APRIL 2023)	
SOURCE: HTTPS://EOIMAGES.GSFC.NASA.GOV/IMAGES/IMAGERECORDS/151000/15136	
BERIANNDVI_TMO_2023084_2023113_LRG.JPG)2	207
FIGURE 5.6 SPAIN CROP CONDITIONS DEVELOPMENT GRAPH BASED ON NDVI (JANUARY-API	
2023)	207
FIGURE 5.7 NDVI ANOMALIES FOR MOROCCO, ALGERIA, AND TUNISIA, COMPARED TO THE	
MEDIUM-TERM PERIOD OF 2013-2022(SOURCE:	
HTTPS://WWW.GRAINCENTRAL.COM/MARKETS/MAGHREB-CEREAL-PRODUCTION-	
TROUBLED-BY-DROUGHT/)	
FIGURE 5.8 MONTHLY SOI-BOM TIME SERIES FROM APRIL 2022 TO APRIL 2023	
(SOURCE: HTTP://WWW.BOM.GOV.AU/CLIMATE/ENSO/SOI/)	
FIGURE 5.9 MAP OF NINO REGION	
(SOURCE: HTTPS://WWW.NCDC.NOAA.GOV/TELECONNECTIONS/ENSO/SST)	
FIGURE 5.10 MONTHLY TEMPERATURE ANOMALIES FOR APRIL 2023	
(SOURCE: HTTP://WWW.BOM.GOV.AU/CLIMATE/ENSO/INDEX.SHTML#TABS=PACIFIC-OCEAN	-
2	211

Abbreviations

5YA Five-year average, the average for the four-month period from January to April for

2018-2022; one of the standard reference periods.

15YA Fifteen-year average, the average for the four-month period from January to April of

for 2008-2022; one of the standard reference periods and typically referred to as

"average".

AEZ Agro-Ecological Zone

BIOMSS CropWatch agroclimatic indicator for biomass production potential

BOM Australian Bureau of Meteorology
CALF Cropped Arable Land Fraction
CAS Chinese Academy of Sciences

CPI Crop Production Index

CWAI CropWatch Agroclimatic Indicator

CWSU CropWatch Spatial Units

DM Dry matter

EC/JRC European Commission Joint Research Centre

ENSO El Niño Southern Oscillation

FAO Food and Agriculture Organization of the United Nations

GAUL Global Administrative Units Layer

GVG GPS, Video, and GIS data

Ha hectare Kcal kilocalorie

MPZ Major Production Zone
MRU Mapping and Reporting Unit

NDVI Normalized Difference Vegetation Index

OISST Optimum Interpolation Sea Surface Temperature

PAR Photosynthetically active radiation
PET Potential Evapotranspiration

AIR CAS Aerospace Information Research Institute

RADPAR CropWatch PAR agroclimatic indicator
RAIN CropWatch rainfall agroclimatic indicator

SOI Southern Oscillation Index

TEMP CropWatch air temperature agroclimatic indicator

Tonne Thousand kilograms

VCIx CropWatch maximum Vegetation Condition Index

VHI CropWatch Vegetation Health Index

VHIn CropWatch minimum Vegetation Health Index

W/m² Watt per square meter CPI Crop Production Index

Bulletin overview and reporting period

This CropWatch bulletin presents a global overview of crop stage and condition between January and April 2023, a period referred to in this bulletin as the JFMA (January, February, March and April) period or just the "reporting period." The bulletin is the 129th such publication issued by the CropWatch group at the Aerospace Information Research Institute (AIR) of the Chinese Academy of Sciences, Beijing.

CropWatch indicators

CropWatch analyses are based mostly on several standard as well as new ground-based and remote sensing indicators, following a hierarchical approach.

In parallel to an increasing spatial precision of the analyses, indicators become more focused on agriculture as the analyses zoom in to smaller spatial units. CropWatch uses two sets of indicators: (i) agroclimatic indicators—RAIN, TEMP, RADPAR, and potential BIOMSS, which describe weather factors and its impacts on crops. Importantly, the indicators RAIN, TEMP, RADPAR, and BIOMSS do not directly describe the weather variables rain, temperature, radiation, or biomass, but rather they are spatial averages over agricultural areas, which are weighted according to the local crop production potential; and (ii) agronomic indicators—VHIn, CALF, and VCIx and vegetation indices, describing the actual crop production and stresses experienced during the monitoring period. (iii) PAY indicators: planted area, yield and production.

For each reporting period, the bulletin reports on the departures for all seven indicators, which (with the exception of TEMP) are expressed in relative terms as a percentage change compared to the average value for that indicator for the last five or fifteen years (depending on the indicator). For more details on the CropWatch indicators and spatial units used for the analysis, please see the quick reference guide in Annex B, as well as online resources and publications posted at www.cropwatch.cn.

CropWatch analysis and indicators

The analyses cover large global zones; major producing countries of maize, rice, wheat, and soybean; and detailed assessments for Chinese regions, 45 major agricultural countries, and 228 Agro-Ecological Zones (AEZs).

This bulletin is organized as follows:

Chapter	Spatial coverage	Key indicators	
Chapter 1	World, using Mapping and Reporting Units (MRU), 105 large, agro-ecologically homogeneous units covering the globe	RAIN, TEMP, RADPAR, BIOMSS	
Chapter 2	Major Production Zones (MPZ), six regions that contribute most to global food production	As above, plus CALF, VCIx, and VHIn	
Chapter 3	44 key countries (main producers and exporters) and 221 AEZs	As above, plus NDVI, GVG survey, and CPI	
Chapter 4	China and seven agro-ecological zones	As above plus high-resolution images; Pest and crops trade prospects	
Chapter 5	Production outlook, and updates on disaster events and El Niño.		
Online Resource	http://cloud.cropwatch.com.cn/		

Regular updates and online resources

The bulletin is released quarterly in both English and Chinese. E-mail cropwatch@radi.ac.cn to sign up for the mailing list or visit CropWatch online at http://cloud.cropwatch.com.cn/. Additionally, by accessing the website, you can obtain information on methods, overviews of major producing countries, and their trends in the medium and long term.

Executive summary

The current CropWatch bulletin describes world-wide crop condition and food production as appraised by data up to the end of April 2023. It is prepared by an international team coordinated by the Aerospace Information Research Institute, Chinese Academy of Sciences.

The assessment is based mainly on remotely sensed data. It covers prevailing agri-climatic conditions, including extreme factors, at different spatial scales, starting with global patterns in Chapter 1. Chapter 2 focuses on agroclimatic and agronomic conditions in major production zones in all continents. Chapter 3 covers the major agricultural countries that, together, make up at least 80% of production and exports (the "core countries") while chapter 4 zooms into China. Special attention is paid to the production outlook of main crop producing and exporting countries where major cereal and oil crops (maize, rice, wheat and soybean) are harvested this year or currently still in the field. Subsequent sections of Chapter 5 describe the global disasters that occurred from January to April 2023.

Agroclimatic conditions

Europe had its warmest January and the second warmest winter since the start of industrialization. Global warming does not only affect temperatures. Another record was set by tropical cyclone Freddy, which traversed the southern Indian Ocean for more than five weeks in February and March 2023. It was the longest-lasting and highest accumulated cyclone energy-producing **tropical cyclone** ever recorded worldwide. It started on February 5, 2023, off the coast of Australia and finally dissipated on March 14 over Mozambique. It caused flooding conditions in southeast Africa, mainly in Malawi. La Niña ended its unusually long cycle, which lasted for three years and caused droughts in East Africa and Argentina. It also brought abundant rainfall to Australia. The end of La Niña already improved the rainfall situation in Argentina and East Africa. Another noteworthy improvement is the end of the multi-year drought in the West of the USA. California benefitted from abundant precipitation caused by a series of so-called atmospheric rivers, which helped restore groundwater and replenish reservoirs.

Global crop production situation

In the current monitoring period, the Crop Production Index (CPI) for global crop production improved from 1.12 to 1.15, indicating slightly better conditions. It was still slightly lower than the 10-year average (CPI=1.16) and significantly lower than the 1.21 value obtained for 2020.

Maize: In Brazil, production of the less important first maize decreased, while the cultivation area and yield of second maize increased, bringing Brazilian maize production to 100.68 million tonnes (+10.3%). However, in Argentina, the drought caused a decrease in production by 9.6%. In Africa south of the Equator, rainfall was somewhat irregular, but all in all, production levels remained unchanged.

Early monitoring indicators of crop cultivation area based on remote sensing indicate that the progress of maize planting in the United States and Canada is slower, lagging behind by 8% and 10%, respectively. However, maize planting in most European countries is progressing much faster. Soil moisture conditions for crop establishment have been mostly favorable in North America and Europe. Global maize production is estimated to increase by 0.4% to 1,049 million tonnes.

Rice: Production of irrigated rice during the dry winter-season was generally normal in South and Southeast Asia, with small increases in rice production in Indonesia, Thailand, Vietnam and Sri Lanka. Small decreases in rice cultivation area in Bangladesh (-3%), Cambodia (-2.2%), Myanmar (-1.7%), India (-1.4%) and the Philippines (-0.8%) were estimated. The production also decreased in Angola (-4.5%), Argentina (-3%) and

Brazil (-0.6%) due to drought conditions. As a result, global rice production decreased by 0.5% to 750.87 million tonnes.

Wheat: Conditions for wheat production were rather favorable in India (+1.9%) and Pakistan (+1.2%), resulting in an increase by 1.9% and 1.2% respectively. In China, untimely frost and snow in April had caused yield reductions in Shanxi (-3.2%), western Hubei (-4.7%), and eastern Gansu (-4.4%). However, in the North China Plain, both area and yield increased in Henan and the neighboring provinces. At the national level, production increased by 1.8% to 136,33 million tonnes. In the USA, Kansas, an important winter wheat producer, continued to be affected by drought conditions. Wheat production in the USA is forecasted to drop by 5.2% to 48,870 million tonnes. Conditions in Morocco were slightly better than last year, resulting in an increase in production by 14.8% to 6.94 million tonnes. Similarly, production in Turkey is estimated to increase by 12.7% to 18.99 million tonnes. Winter wheat production in Western, Central and Eastern Europe benefitted from a mild winter with above average precipitation. Hence, a higher production than in 2022 can be expected. Global wheat production is estimated to increase by 0.7% to 745,53 million tonnes.

Soybean: The soybean production of Brazil and Argentina is only second to that of the United States. CropWatch predicts that Brazil's soybean production will reach 108.4 million tonnes (+13.9%) due to an expansion of the cultivated area and favorable weather conditions resulting in higher yields. In Argentina, the drought conditions caused a reduction in area and yield, resulting in a production by 18.9% to 42,01 million tonnes. Conditions for sowing have been favorable in North America and Europe. Global soybean production is estimated to increase by 2.2% to 327,17 million tonnes.

•